The Diesel Exhaust in Miners Study

APPLYING THE PARAMETRIC G-FORMULA TO EVALUATE INTERVENTIONS FOR OCCUPATIONAL RISK ASSESSMENT

Andreas M Neophytou

05.15.2015

Alpha Foundation

- Re-analyze Diesel Exhaust in Miners Study for risk of lung cancer accounting for healthy worker effect
- Data agreement with NCI/NIOSH

The Diesel Exhaust in Miners Study (DEMS)

- Cohort of 12,315 blue collar job workers from eight non-metal mining facilities (our analyses restricted to 8,307 "ever-underground" workers)
- Follow-up began at dieselization for each mine (1947-1967)
- Administrative end on December 31st 1997 (Maximum follow-up 50 years)

DEMS

- Facilities selected to be low in other potential risk factors for lung cancer
 - radon, asbestos and silica

 Diesel Exposure and Lung Cancer Mortality (respirable elemental carbon as surrogate)

DEMS

- Earlier studies show associations between diesel exhaust exposures and lung cancer in this population (Attfield et al. 2011, Silverman et al. 2011)
- Important findings leading to IARC decision to classify diesel exhaust as a human carcinogen
- Meta-analysis results suggest excess lung cancer risk even at lower ranges of exposure (Vermeulen et al. 2014)

What is HWSE

Healthy workers accumulate more exposure

- Less healthy workers may
 - take more time-off
 - transfer to less exposed jobs
 - terminate employment earlier
- Potential health effects of exposure may be hidden or stronger than estimated

Traditional Solutions

- Employment status (or duration of work) affects the association between cumulative exposure and potential health effects
- If exposure does not cause termination of employment then duration of work can be treated as traditional confounder in studies looking at the effect of cumulative exposures.
- Steenland et al (1996) simulation study showed that conventional methods to remove HWSE bias fail if exposure increases the probability of leaving work

Exposure and Duration of Work

- We fit an accelerated failure time model to assess whether exposure affects time to termination of employment
- Interested in whether exposure makes workers leave work earlier ('accelerates' retirement)

Exposure and Duration of Work

► Time to termination of employment 33% shorter for every IQR increase in exposure $(167 \ \mu g/m^3)$

Table: Hazard Ratio (HR) approximations and 95% CIs, for termination of employment and IQR increase in REC exposure

Cohort Subset	HR (95% CI)
Ever-underground subcohort (n=8,307)	1.57 (1.47 - 1.62)
Incident hires only $(n=7,750)$	1.54 (1.44 - 1.60)
Incident hires and \geq 3 years tenure (n=5,993)	1.33 (1.26 - 1.40)
Incident hires and \geq 5 years tenure (n=4,971)	1.24 (1.17 - 1.30)

Advanced methods

- Group of methods collectively referred to as g-methods
 - G-estimation of Structural Nested Models
 - Marginal Structural Models and Inverse Probability Weights
 - G-formula
- Can adequately control for time varying confounding affected by previous exposure

Assess Lung Cancer under Hypothetical Interventions

- Hypothetical Intervention Levels
 - ▶ MSHA old limit of 400 $\mu g/m^3$ of total carbon (TC), and new limit of 160 $\mu g/m^3$ TC
 - ACGIH recommendations of 50 and 20 $\mu g/m^3$ elemental carbon (EC)
- We use internal study-specific exposure assessment relationships (Vermeulen et al., 2010) to convert TC values to EC and then from the submicron size fraction to the respirable fraction

Person-Time by Intervention

Table: Person-Time in the DEMS ever-underground subcohort affected under each intervention assessed

Intervention	% Active person-time above intervention
REC \leq 260 $\mu g/m^3$ (MSHA, old)	10
REC \leq 106 $\mu g/m^3$ (MSHA, new)	39
REC \leq 65 $\mu g/m^3$ (ACGIH, old)	53
REC \leq 25 $\mu g/m^3$ (ACGIH, new)	63

Estimates of Risk and Risk Ratios

Table: Cumulative incidence for lung cancer mortality and corresponding Risk Ratios (RR) and 95% CIs, under several interventions in the DEMS underground cohort

Intervention	Lifetime Risk (%)	RR (95% CI)
Observed Data	7.79	
REC \leq 260 $\mu g/m^3$ (MSHA, old)	7.77	0.99 (0.92 - 1.02)
REC \leq 106 $\mu g/m^3$ (MSHA, new)	7.14	0.92 (0.64 - 1.15)
REC \leq 65 $\mu g/m^3$ (ACGIH, old)	6.80	0.87 (0.57 - 1.15)
REC \leq 25 $\mu g/m^3$ (ACGIH, new)	6.18	0.79 (0.47 - 1.13)

Conclusions

- Evidence of HWSE in the DEMS ever-underground subcohort
- Risk assessment: Assess intervention effects directly in the population of interest using the g-formula
- Lung Cancer risk reduction associated with increasingly more stringent diesel exhaust interventions in DEMS

UC Berkeley

Ellen A Eisen Sadie Costello Sally Picciotto

NCI/NIOSH

Debra T Silverman Michael D Attfield Aaron Blair Roel Vermeulen

