

Analyses of De-confinement Mechanisms of Unstable Failures in Underground Mining Conditions

Ruixiang Gu and Ugur Ozbay Colorado School of Mines

Prepared for the 33rd International Conference on Ground Control in Mining July 29-31, 2014, Morgantown, WV

Presented by Ryan Garvey

Contents

- Unstable failure
- Stiffness criteria
- Joint and block constitutive models
 - Continuously Yielding (CY) joint model
 - Mohr-Coulomb strain softening (MCSS) model
- De-confinement mechanisms and simulation results
 - Unstable shear failure at interface
 - Weak regions along interface
- Conclusions

Unstable Failures – Rock Bursts and Coal Bumps

Stable failure

Unstable failure

Stiffness Criteria

- Cook, N.G.W. 1965. A note on rockbursts considered as a problem of stability. *Journal of the South African Institute of Mining and Metallurgy* 65: 437-446.
- Rice, J.R. 1983. Constitutive relations for fault slip and earthquake instabilities. *Pageoph* 121(3): 443-475.

Joint and Block Model

• Mohr-Coulomb strain softening (MCSS) model

An example stress-strain curve of softening model.

A conceptual representation of variations of cohesion, friction angle and dilation angle in the MCSS model.

Joint and Block Model

Continuously Yielding (CY) joint model

The typical shear stress-shear displacement curve of the CY joint model (Itasca Consulting Group, 2010) Shear stress-shear displacement curve of the CY joint model under increased normal loading (Gu and Ozbay, 2014)

- Itasca Consulting Group. 2010. UDEC manual, version 4.0. Minneapolis, MN, USA.
- Gu, R and Ozbay, U. 2014. Distinct element analysis of unstable shear failure of rock discontinuities in underground mining conditions. International Journal of Rock Mechanics and Mining Sciences, 68: 44-54.

De-confinement Mechanism

Mining geometry used for modeling de-confinement induced unstable compressive failures in sidewalls (mining advances perpendicular to the plane causing shear stress increases at the interfaces close to the sidewalls).

Numerical Model and Results

Model for the studies of de-confinement resulted from unstable shear failures at the interfaces.

Numerical Model and Results

De-confinement Mechanism and Model

Model for the studies of de-confinement resulted from the existence of weak regions at the interfaces.

Numerical Model Results

Vertical stress-time curves of the measurement regions in the simulation.

Conclusions

- Unstable failures signified by sudden losses of load while stable failures follow a relatively smooth and gradual reduction in load.
- Sudden slip along interface led to rapid de-confinement and strength reduction of coal -> coal bump conditions
- Weak portions in rock-coal interface could lead to greater volumes of affected coal and larger magnitude compressive failures