Energy concepts in the analysis of unstable coal pillar failure

Eric Poeck K. Zhang, R. Garvey, U. Ozbay

ICGCM 2015

Research Topic

- Study of unstable coal pillar failure
- Back analysis of 2007 Crandall Canyon accident

Objective of Study

- Evaluate unstable failure in pillar-scale analyses
 - Loading conditions
 - Coal material properties
 - Coal / rock interface properties
- Quantify unstable failure in mine-scale analyses
 - Calculation of released kinetic energy
 - Pillar stress / strain
 - Vertical closure along coal seam

Crandall Canyon Main West

Depth of overburden Abutment loads

Excavation sequence Geometry

(Gates, 2008)

Pillar-Scale Analysis

- Assumption: collapse involved unstable failure of large number of squat pillars at once
- Can we reproduce unstable failure of a squat pillar?
- Will magnitude of released energy in a single pillar provide insight to collapse?

Geometry and Input Variables

- **Loading Conditions**
 - Gradual pressure increase
 - Constant (slow) displacement
- Coal material properties
 - Mohr-Coulomb
 - MC Strain Softening
- Coal / rock interface
 - Fixed (no shear slip)
 - Coulomb slip
 - Continuously-Yielding
 - (displacement softening)

Figure 7- Damaged Roof Bolts and Torn Mesh after August 6 Accident Resulting from Northward Movement of Southern Barrier

Figure 8 - Damaged Roof Bolts in No. 1 Entry after August 6 Accident
Resulting from Northward Movement of Southern Barrier. Mesh shown was installed during
rescue operations, over damaged original roof bolts. Camera view is indicated by arrow in index map insert.

Coal/Rock Interface Parameters

	Coulomb Slip	Continuously Yielding
Shear Stiffness (Pa)	50.0e9	50.0e9
Normal Stiffness (Pa)	50.0e9	50.0e9
Initial Friction angle (deg)	20.0	40.0
Intrinsic Friction angle (deg)	-	15.0
Joint roughness (m)	-	0.00015
Cohesion (Pa)	0.0	-
Dilation angle (deg)	0.0	-
Tensile Strength (Pa)	0.0	-

Released Kinetic Energy, W_r

Calculated and recorded by UDEC

$$W \downarrow r = U \downarrow k + W \downarrow k$$

Current value of kinetic energy in system

Work dissipated by damping

Pillar-Scale Results

- 1. Softening interface promotes instability (energy release)
- 2. Strain-softening coal promotes instability
- 3. Combination of these facilitates unstable failure of pillars

Mine-Scale Analysis

Mine-Scale Geometry

Simulation of Abutment Loads

Physical abutment wedge at static equilibrium

Equivalent grid point forces

Mine-Scale Results

- Same combination of material properties used in pillar-scale analysis
- Same energy calculation procedure as pillar-scale models
 - For a 2D model energy released per meter in 3rd direction

Model to be discussed further

Energy Released Through Development of North Barrier

- In virgin ground conditions, very little released energy
- After abutment loading, increasing instability
- Energy values in range of megajoules may relate to March 2007 bump

Energy Released During Development of South Barrier

- More energy values in the range of megajoules
- Collapse during excavation of final entry
 - Verified through stress/ strain behavior

• Vertical stress through intact coal depends upon strength of pillars elsewhere

• Stress drop in all models due to deconfinement (excavation)

- Stress drop in all models due to deconfinement (excavation)
- Lower residual strength with softening coal/rock interface

- Combination of softening parameters facilitates collapse of MCss-CY model
- Failure mode of squat pillars dependent upon shear slip

Closure After North Barrier Development

Closure After South Barrier Development

Closure After South Barrier Development

Conclusions

- Calculation of released kinetic energy used to quantify degree of instability in study of pillar failure
- Strain softening coal + displacement softening interface = greatest instability
 - True for all loading conditions and pillar geometries
 - Reveals mode of pillar failure dependent upon shear slip
- Energy results from mine-scale simulation illustrate a trend of increasing energy release during North Barrier excavation and significant failure event during excavation of the South Barrier
- Further research required to correlate energy of simulated collapse with seismic magnitudes observed during accident

