

Outline

- > Introduction
- > Flooded-bed Scrubber
- Objectives
- > Research Goals
 - Scrubber Design
 - Prototype Building
 - Laboratory Testing
- ➤ Results
- Conclusions

Introduction

- Dust generation at an underground working face is a health and safety issue
- > Health
 - Prolonged exposure of airborne respirable dust can cause coal workers' pneumoconiosis (CWP) and silicosis
 - Black lung has killed more than 10,000 miners between 1995 and 2004 (NIOSH, 2008)

Introduction (cont.)

- > Safety
 - The generated dust, if not captured, is deposited downwind on the return entries' surfaces
 - ❖ A methane explosion can trigger a coal dust explosion
 - o Jim Walters No. 5 Mine
 - o Upper Big Branch Mine

Introduction (cont.)

- Popular dust control techniques in an underground mine:
 - Dilution through ventilation air
 - Suppression by water sprays
 - Dust capturing through a machine mounted wet scrubber

Flooded-Bed Scrubber (cont.)

- > Performance measured by
 - Capture Efficiency
 - Cleaning Efficiency
- ➤ Capture efficiency 91%, 86%, and 40% on three different mines (Colinet et al., 2014)
- ➤ Can achieve a cleaning efficiency of 90% under its optimum conditions(NIOSH, 1997)

Objectives

- Reduce dust concentration at a longwall face
- Integrate a flooded-bed scrubber to a longwall shearer

	ON	Low (-1)	Factor	
	OIV	OFF	Inlet extension (A)	
	700 cfm (6.46 m³/s	6,336 cfm (3 m ³ /s)	Scrubber quan. (B)	
Face velocity (C) 500 fpm (2.54 m/s) 7	00 fpm (3.56 m/s)	500 fpm (2.54 m/s)	Face velocity (C)	
Face velocity (C) 500 fpm (2.54 m/s) 7	00 fpm (3.56 m/s)	500 fpm (2.54 m/s)	Face velocity (C)	

Data analysis (Regression Model)								
	Term	Estimate	Std Error	t-Ratio	P-Value			
	Intercept	43.64	0.58	74.7	<.0001			
	А	4.07	0.58	6.96	<.0001			
	В	12.10	0.58	20.71	<.0001			
	С	0.10	0.58	0.18	0.86			
	AB	0.03	0.58	0.05	0.96			
	AC	2.64	0.58	4.51	<.0001			
	ВС	-0.03	0.58	-0.05	0.96			
	ABC	-1.14	0.58	-1.94	0.06			
Α.	→ Inlet Exter $\hat{y} = 43$		6crubber Qu 7A + 12.10	• •		ity		
Mod	tel 🛑 l	62.45% eduction	Exp	eriment		42% uction		

Conclusions

- > Emulating the success of flooded-bed scrubber
- Design of a flooded-bed scrubber, Physical model fabrication, Laboratory testing
- ➤ A maximum 96% and 62% dust reduction in the walkway and return respectively
- > Scrubber quantity is the most significant factor, followed by the inlet extension

