EXPERIMENTAL TEST RESULTS OF A SHEARER-MOUNTED FLOODED-BED DUST SCRUBBER

Central Appalachian Section SME West Virginia Coal Mining Institute 2017 Joint Spring Meeting Friday, April 7, 2017

> Joe Sottile University of Kentucky

SPONSOR AND TEAM

- Sponsor: Alpha Foundation for the Improvement of Mine Safety and Health
- PI: Thomas Novak
- Co-Pls: Chad Wedding, Joe Sottile
- UK Staff Ed Thompson
- Graduate Students
 - Sampurna Arya, Ph.D. student
 - Ashish Kumar, Ph.D. student
 - Adam Levy, M.S. student
 - Brad Coleman, Ph.D. student
 - Kayla Mayfield, Ph.D. student

SPONSOR AND TEAM

- NIOSH Personnel
 - Jim Rider
 - Jay Colinet
 - Others
- Consultants
 - John Campbell
 - Dan Moynihan
- Joy Global
 - Joe Defibaugh
 - Others
- Alliance Coal
 - Numerous

BACKGROUND

- Dust is a consequence of many (virtually all) mining processes
- Coal Mining
 - Heath Issues CWP
 - Safety Issues Float Dust
- Longwall Mining
 - Accounts for apx. 60% of underground production
 - High production
 - High dust generation

BACKGROUND

- Longwall dust mitigation measures
 - Dilution with ventilation air
 - Wetting and capture by water sprays
 - Confinement and isolation by water sprays

Dust Control Using Flooded-Bed Dust scrubbers

- Application of floodedbed dust scrubbers to continuous miners patented by John Campbell in 1983
- Capture dust and clean dust-laden air close to the source of generation

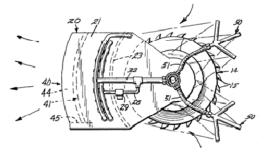
Max. 40 ft Max. 40 ft Intake Air Une Brattice Recturn Air Scrubber Inlets Scrubber Exhaust

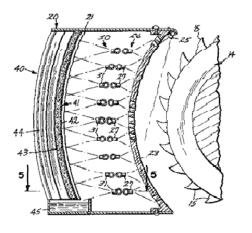
BACKGROUND

Problems with Applying Dust Scrubbers to Longwall Systems

- Nature of the mining process
 - Large machine limited available space
 - Visibility
 - Much higher airflow rates compared with continuous mining
 - Potential for overloading/damaging scrubber with rock/coal

BACKGROUND

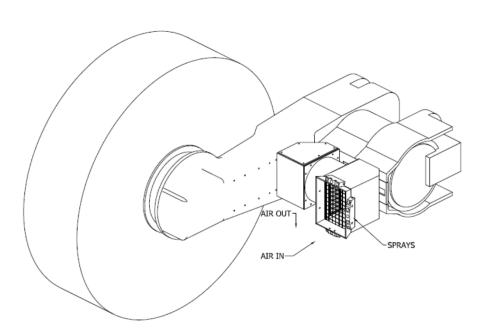

Tube Induced airflow Face side spray ring Nozzle Defector plate


Prior Attempts at Using Scrubbers on Longwalls

- Ventilated drum
- 3500 cfm airfow
- 50% capture with face airflow of 28,000 cfm
- Maintenance issues

Prior Attempts at Using Scrubbers on Longwalls

- Ventilated cowl
- 50% reduction in dust
- Reliability and maintenance issues

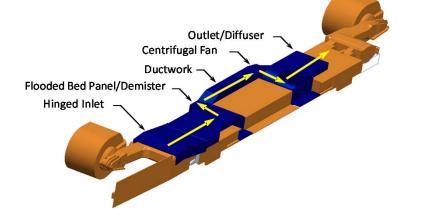

BACKGROUND

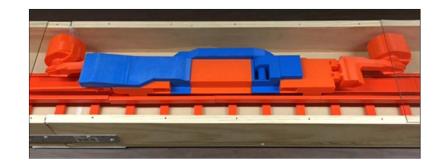
- 14. Cutter Drum
- 15. Cutter Bit
- 20. Scrubber
- 21. Housing
- 23. Scree-Like Barrier
- 25. Surface Sprays
- 26. Back-Flush Sprays
- 27. Back-Flush Nozzles
- 28. Piping
- 29. Pressure Switch
- 30. Jet-Spray Air-Movement Section
- 31. Jet-Spray Nozzles
- 32. Piping
- 40. Mist Consolidator and/or Eliminator Element
- 41. Fibrous Media Panel
- 42. Fibrous Media Surface
- 43. Rearward Side of Fibrous Panel
- 44. Wave Blade Demister
- 45. Sump
- 50. Water Spray Means
- 51. Flexible Spray Supports

BACKGROUND

Prior Attempts at Using Scrubbers on Longwalls

- Scrubber added to headgate ranging arm
 - Demonstrated dust reductions of 14% to 56%
 - Prone to damage

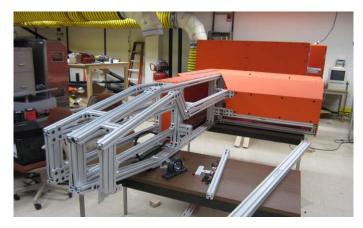


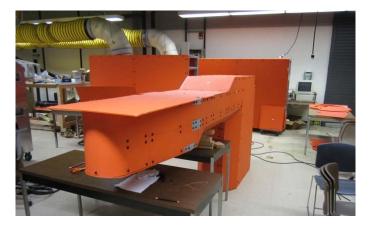

PROJECT OBJECTIVE

- Design and build a full-scale mock-up of a shearer with an integrated flooded-bed dust scrubber
- Evaluate performance of scrubber
- Limit efforts to dust generated near headgate drum

RESEARCH APPROACH (BRIEFLY)

- Information Gathering
- Developing Computer-Generated Design
- Scale modeling and CFD Verification





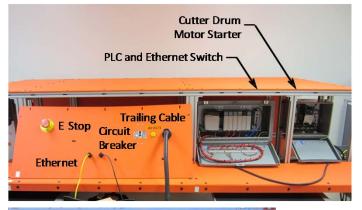
FABRICATION OF FULL-SCALE MOCKUP

- Frame Constructed with 80/20 T-slotted framing system
- Covering high-density polyethylene sheets
- Scrubber Scrubber and demister designed for continuous miner but with 50-hp fan driven by VFD
- Controls Programmable Automation Controller (PAC)
- Rotating headgate drum with water sprays

FRAME AND COVERING


HEADGATE CUTTING DRUM

SCRUBBER SYSTEM



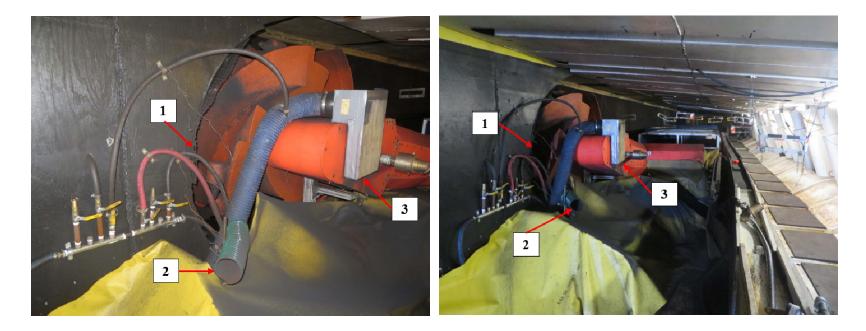
CONTROLS

COMPLETED MOCKUP

TESTING – NIOSH PRL LONGWALL GALLERY

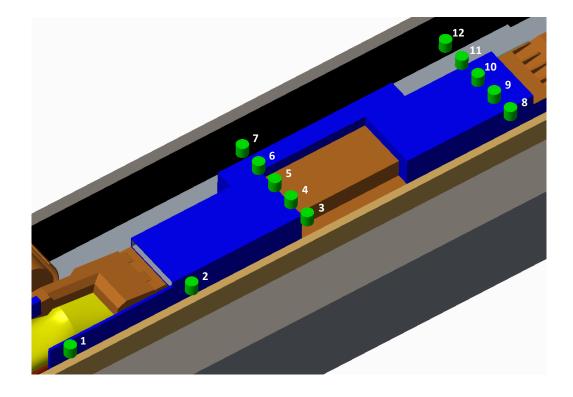
Location: CDC NIOSH Pittsburgh Research Laboratory

- 125 ft-long longwall gallery
- Adjustable ceiling/shield height
- Air velocity up to 700 fpm
- Ability to inject respirable dust (Keystone Mineral Black 325BA)



INSTALLATION AT PRL LONGWALL GALLERY

DUST INJECTION


• Dust injected at three locations near headgate drum

DUST MEASUREMENT LOCATIONS

16 dust monitoring locations

- 12 along face
- 4 in return airway

Combination of ThermoFisher Scientific PDM 3600 and PDM 3700

 Experiments conducted with NIOSH equipment by NIOSH personnel

DUST MEASUREMENT

EXPERIMENTAL PROCEDURE

- Full Factorial Design
 - Three factors
 - Two levels
 - Five replications
 - Total number of tests: $(5)(2^3) = 40$

EXPERIMENTAL FACTORS AND LEVELS

Factor	Low Level	High Level		
Scrubber inlet extension	Removed	Included		
Scrubber capacity	6300 cfm (2.97 m ³ /s)	13,700 cfm (6.47 m ³ /s)		
Face air velocity	500 fpm (2.54 m/s) 40,800 cfm (19.3 m ³ /s)	700 fpm (3.56 m/s) 57,200 cfm (27.0 m ³ /s)		

OPERATING CONDITIONS

Step	Operating Condition				
1	Dust only				
2	Dust + scrubber fan				
3	Dust + scrubber fan + scrubber sprays				
4	Dust + scrubber fan + scrubber sprays + splitter arm sprays				
5	Dust only				

DETERMINING DUST REDUCTION

Dust Reduction =
$$\left(1.00 - \left[\frac{C_S}{(C_{01} + C_{02})(0.5)}\right]\right)(100\%)$$

 C_S = dust concentration measured with the scrubber fan and sprays ON and splitter arm sprays OFF C_{01} = dust-only concentration at beginning of test C_{02} = dust-only concentration at end of test

LOCATIONS STUDIED

- Return airway with shearer clearer sprays OFF
- Walkway with shearer clearer sprays OFF
- Face area with shearer clearer sprays OFF
- Area above shearer body with shearer clearer sprays OFF
- Return airway with shearer clearer sprays ON
- Walkway with shearer clearer sprays ON

ANALYSIS-EXAMPLE

Summary of results for return airway-Splitter arm sprays OFF

Treatment	Design Factors		Reduction in Dust Concentration (%)							
Combinations	A	В	С	Run 1	Run 2	Run 3	Run 4	Run 5	Averages	Totals
(1)	-1	-1	-1	17.84	27.05	19.27	22.07	19.60	21.17	105.83
a	1	-1	-1	17.53	19.86	18.91	31.34	21.73	21.87	109.37
b	-1	1	-1	42.41	45.36	37.62	40.64	48.96	43.00	214.99
с	-1	-1	1	21.54	24.46	27.67	24.82	19.35	23.57	117.83
ab	1	1	-1	52.53	47.11	48.87	54.49	46.16	49.83	249.17
ac	1	-1	1	31.70	32.39	33.88	35.45	32.56	33.19	165.97
bc	-1	1	1	50.95	51.05	47.05	45.78	53.29	49.63	248.13
abc	1	1	1	56.31	60.43	56.02	54.76	57.41	56.99	284.93

A = scrubber inlet extension, B = scrubber capacity, C = face air velocity

ANALYSIS-EXAMPLE

Regression model parameter estimates for return airway-splitter arm sprays OFF

	$R^2 = 0.95$							
Term	Estimate	Std Error	t-ratio	Critical Value	P-Value			
Intercept	37.4054	0.5643	66.28	2.739	< 0.0001*			
Α	3.0667	0.5643	5.43	2.739	< 0.0001*			
В	12.4549	0.5643	22.07	2.739	< 0.0001*			
С	3.4374	0.5643	6.09	2.739	< 0.0001*			
AB	0.4824	0.5643	0.85	2.739	0.3990			
AC	1.1807	0.5643	2.09	2.739	0.0444			
BC	0.0074	0.5643	0.01	2.739	0.9896			
ABC	-1.0495	0.5643	-1.86	2.739	0.0721			

A = scrubber inlet extension, B = scrubber capacity, C = face air velocity

 $\hat{y} = 37.405 + 3.067a + 12.455b + 3.437c$

SUMMARY OF RESULTS

Summary of scrubber performance with splitter arm sprays OFF

General Location	Dust Monitoring Stations	Treatments for best performance	Maximum Predicted Dust Reduction	Comments
Return	13-16	Inlet extension included 100% scrubber capacity Face air velocity 700 fpm	56.4%	Scrubber capacity is largest effect
Walkway	1, 2, 3, 8	Inlet extension included 100% scrubber capacity Face air velocity 700 fpm	74.2%	Scrubber capacity is largest effect
Face Area	7, 12	Inlet extension included 100% scrubber capacity Face air velocity 700 fpm	65.1%	
Shearer Body above scrubber module	4-6	Inlet extension included 100% scrubber capacity Face air velocity 700 fpm	60.6%	
Shearer Body above tailgate module	9-11	Inlet extension included 100% scrubber capacity	80.6%	No face-air-velocity main effect

SUMMARY OF RESULTS

Summary of scrubber performance with shearer clearer sprays ON

General Location	Dust Monitoring Stations	Treatments for best performance	Maximum Predicted Dust Reduction	Comments
Return	13-16	Inlet extension included 100% scrubber capacity Face air velocity 700 fpm	62.5%	Scrubber capacity is largest effect No face-air-velocity main effect
Walkway	1, 2, 3, 8	Inlet extension removed 100% scrubber capacity Face air velocity 500 fpm	97.4%	 Correlation coefficient of 0.60 Intercept of 91.5% Dust reduction ranges from 85.5% to 97.4% These results indicate that the splitter arm sprays prevent a significant portion of dust from entering the walkway regardless of the treatments

- Shearer-integrated scrubber has potential to capture and clean airborne respirable dust (up to 56% without shearer clearer sprays, up to 62% with shearer clearer sprays as measured in return airway at PRL longwall gallery
- Shearer-integrated scrubber has potential to reduce airborne respirable dust along walkway (up to 85% without shearer clearer sprays)
- Tests were conducted under controlled laboratory conditions
- Future considerations
 - Overloading of scrubber
 - Clogging/damage due to coarse particles entering scrubber inlet
 - Damage to ductwork
 - Noise

QUESTIONS

