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2.0  Executive Summary:  

2.1. Problem 
This project addresses two key areas of interest to the Foundation: 1) Development and 
demonstration of surveillance methods for health outcomes that may have widespread 
application; and, 2) Development and demonstration of tools, methods, or strategies for the 
identification and prevention of work-related health effects in a well-defined working 
environment.   
 
Decisions about interventions to improve miners’ health and safety require reasonable estimates 
of the intervention’s impact. Health and safety professionals require a clear idea of where impact 
can be made, and how big of an impact an intervention may have in terms of disease, disability, 
and mortality.  This project is focused on improving methods to estimate the impact of health 
and safety interventions for the prevention of work-related disease and mortality. 
 
2.2. Research Approach  
In the project’s first aim, we addressed the need for valid information to accurately rank-order 
excess disease or death, by category of disease.  We developed and illustrated methods for 
calculation and ranking of cause-specific excess disease in a contemporary framework for valid 
decision making; this aim included development of tools for communication in graphical as well 
as tabular formats of cases of disease and disease-free life.  This may inform specific 
interventions or serve as a basis for framing future intervention efforts.  
 
In the project’s second aim, we extended the framework to offer a simple solution to 
interpretation of competing risks.  We developed models for competing diseases potentially 
affected by the work environment. Here we target estimation of quantities to inform a policy 
maker about potential impacts on a range of disease endpoints of interventions that 
effect occupational exposure. We illustrated results in a miner cohort with a focus on models for 
diseases of the heart and lung.  
 
In our third aim, we considered how intervening on exposure to one agent may have spillover 
effects. Policy evaluation, however, emphasizes the need for identification of where the greatest 
impact of a policy occur.   
 
2.3. Accomplishments  
First, statistical methods were developed to address each of the project specific aims.   
 
Second, we have communicated the findings.  We have presented the findings at international 
scientific conferences and prepared two scientific manuscripts to describe the results: one a 
development of the statistical framework used in these aims; and, a second, a manuscript that 
aims at broadening the uptake of these methods by practicing occupational epidemiologists.   
 
Third, we have facilitated dissemination of the methods.  We have developed SAS statistical 
code for implementation of these methods.   
 
Fourth, we have applied the methods to real data for a large cohort miners.  We conducted our 
empirical illustration of the methods using data files created through the Foundation-supported 



project.  Specifically, we created an analytical database needed for the proposed work that 
encompasses nearly a million person-years of observation for almost 30,000 miners who had 
work experience in uranium mines, and had detailed work history, exposure, and mortality 
follow-up information.  To do this, we established and demonstrated the feasibility of external 
investigators working with these data through the creation of ‘dummy’ pilot data to develop and 
de-bug code, then running final code on the OCRC servers in collaboration with staff there.  
These data were successfully used for the statistical analyses proposed for the project aims. 
 
2.4. Expected Impact 
The proposed work develops innovative methods for leveraging applied decision theory to 
improve mine health and safety. We develop and illustrate these methods using data for a large 
cohort of Ontario miners.  We expect the approach to become increasingly used by practicing 
epidemiologists due to its analytical clarity and the usefulness of the approach. 
 
 
  



3.0 Problem statement and Objectives 
This project addresses two key areas of interest to the Foundation: 1) Development or 
demonstration of surveillance methods for exposures and/or health outcomes that may have 
widespread applications; and, 2) Development or demonstration of tools, methods, or strategies 
for the identification/prevention of work related health effects in one or more well defined 
working environment.  Decisions about possible interventions to improve miners’ health and 
safety require reasonable estimates of the intervention’s impact. Health and safety professionals 
require a clear idea of where impact can be made, and how big of an impact an intervention may 
have in terms of disease, disability, and mortality.  The goal of the proposed work is to develop 
innovative methods for leveraging applied decision theory to improve mine health and safety.   
 
3.1  Aim 1. Methods to rank order the occupationally-associated health problems of miners. 
Valid information that allows health and safety professionals to accurately rank-order excess 
disease or death, by category of disease, may inform specific interventions or serve as a basis for 
framing future intervention efforts. We develop and illustrate methods for calculation and 
ranking of cause-specific excess disease in a contemporary framework for valid decision making; 
this aim includes development of tools for communication in graphical as well as tabular formats 
of cases of disease and disease-free life.  The goal of Aim 1 was to identify the leading 
categories of excess disease may begin to inform thinking about specific intervention efforts. We 
established methods for calculation and ranking of cause-specific excess disease in a 
contemporary framework for valid decision making.     
 
We developed and illustrated these methods using data for a large cohort of Ontario miners.  We 
undertook the statistical analyses to address Aim 1 using data for 28,546 miners employed in 
uranium mining in Ontario between 1954 and 1996.  We analyzed information regarding vital 
status and cause of death information through 2007. 
 
 
3.2.  Aim 2. Methods to improve decision making about hazards in the mine environment 
that may affect multiple diseases. We extended the framework to estimate joint models for 
diseases potentially affected by the work environment. Here we target estimation of quantities to 
inform a policy maker about potential impacts on a range of disease endpoints of interventions 
that effect occupational exposure. This approach offers a simple solution to interpretation of 
competing risks. We focus on joint models for diseases of the heart and lung.  
 
3.3 Aim 3. Methods to improve decision making in a setting with multiple hazards. We 
considered how intervening on exposure to one agent may have spillover effects. Standard 
analyses often do a poor job because the focus in on estimation of the independent effect of each 
agent. Policy evaluation, however, emphasizes the fact that interactions (e.g., departures from 
additivity of effects) are central to decision making and identification of where the greatest 
impact of policy choices occur. We will extend the use of Markov chain Monte Carlo methods in 
a Bayesian analysis to estimate joint models for disease affected by multiple exposures. This 
approach offers a framework for addressing uncertainty in decision analysis while leveraging 
external information. 
 
  



4.0 Research Approach 
 
4.1. Methods for Aim 1.  
 
Consider a study in which deaths have been ascertained without loss-to-follow-up for a closed 
occupational cohort of n men.  Define study entry as time 0 and potential study follow-up of T 
years.  Define D as the time of death (possibly occurring after time T in which case D is 
unobserved).  We use subscript i to denote the values of variables for cohort member i.  
 
Suppose we denote the hazard rate as ha, where a=1 indicates the occupational cohort of interest 
and a=0 indicates a reference mortality rate (e.g., from a region or nation).  We use superscript 1 
and 0 to denote exposed and (reference) unexposed, respectively, throughout the paper.   We 
allow that the hazard may vary with baseline characteristics, and vary over time on study.  Let W 
denote a vector of baseline characteristics such as race, sex, age at entry, and calendar year of 
entry.  Denote the mortality rate at time t in the occupational cohort by ℎ"(𝑡|𝑾); and, denote the 
reference hazard rate function (e.g., race, sex, age, and calendar period-specific death rates for a 
region or nation) by ℎ((𝑡|𝑾).  Furthermore, suppose that we allow that potential follow-up time 
to vary between cohort members, as occurs when there is staggered entry into the study and the 
administrative end of study follow-up is a single calendar date.  Therefore, we again define study 
entry as time 0 and now denote potential study follow-up as Ti years for person i.   
 
Suppose that follow-up time has been grouped into discrete time intervals, where L(u) is the 
duration of follow-up over the uth time period.  Let 𝑆*(𝑢|𝑾,) denote the probability of surviving 
through time u or one minus the probability of being dead by time u, i.e., 
 
𝑆*(𝑢|𝑾,) = 1 − ∑ ℎ*(𝑣|𝑾,)𝑆*(𝑣 − 1|𝑾,)𝐿(𝑣)3

45( , 
 
where we define 𝑆*(−1|𝑾,) = 1 and assume the rate is suitably small for this approximation; 
namely, our estimands are conditional on survival until entrance into the study.  
 
The expected value of 𝑌,* for a person who experienced the hazard rate, ℎ*(𝑡|𝑾𝒊), over the span 
of Ti years is 
 
∑ ℎ*(𝑢|𝑾,)
89
35( 𝑆*(𝑢 − 1|𝑾,)𝐿(𝑢).   

 
Letting O denote the total number of deaths in a cohort of size n given occupational exposure 
(a=1), the expected value of O is 
 
∑ ∑ ℎ"(𝑢|𝑾,)

89
35( 𝑆"(𝑢 − 1|𝑾,)𝐿(𝑢):

,5" . 
 
Letting E denote the overall number of deaths in a cohort of size n in the absence of occupational 
exposure (a=0), the expected value of E is 
 
∑ ∑ ℎ((𝑢|𝑾,)

89
35( 𝑆((𝑢 − 1|𝑾,)𝐿(𝑢):

,5" .   
   
An estimator for person-time, Pa, in the cohort of interest (a=0 or a=1) is,  



∑ ∑ 𝑆*(𝑢|𝑾,)
89
35( 𝐿(𝑢):

,5" .  
 
This formula is attained since the average time contributed to the study by a cohort member, i, is 
the area under the survival curve, estimated by ∑ 𝑆*(𝑢|𝑾,)𝐿(𝑢)

89
35( . 

 
Using these quantities we can define the difference in the expected number of deaths under 
policy options, the difference in person-time in the cohort under policy options, and difference in 
rates of death. 95% confidence intervals were calculated using Byar’s method. 
 

4.2. Methods for Aim 2.  
Suppose we are interested in cause-specific mortality rather than all-cause mortality, and allow 
for competing causes of death.  We now allow that the probability of survival depends upon two 
categories of cause of death: A and B, where B denotes death due to all causes other than A.  
Allowing  ℎ;((𝑡|𝑾) to denote the discrete time hazard rate of outcome A in the absence of 
exposure, and ℎ<((𝑡|𝑾) to denote the hazard of outcome B in the absence of exposure, the 
expected numbers of deaths due to A, denoted EA is calculated as,  
 
∑ ∑ ℎ;((𝑢|𝑾,)𝑆((𝑢 − 1|𝑾,)𝐿(𝑢)

89
35( 	:

,5" , 
 
where S0(u|Wi) is defined as the overall probability of survival up to time u, given as  
 
S0(u|Wi)=1 − {∑ ℎ;((𝑣,𝑾,)𝑆((𝑣 − 1,𝑾,)𝐿(𝑣)3

45( + ∑ ℎ<((𝑣,𝑾,)𝑆((𝑣 − 1,𝑾,)𝐿(𝑣)3
45( }.  

 
   
4.3. Extension of methods for Aims 1 and 2 to a Quantitiative Exposure Metric 
Now, consider a cohort mortality study where Xi denotes a binary point exposure of primary 
interest, and Zi denote baseline covariates (such as age at study entry, race, and sex), noting that i 
indexes cohort members and we use subscript i to denote the values of variables for cohort 
member i.  Suppose the cohort information is recorded in discrete time, meaning that continuous 
time has been divided into a sequence of contiguous time periods of equal duration (e.g., person-
years).  Define study entry as time 0 and administrative censoring at end of study, 𝜏.  Denote by 
Ti person i’s failure time, Ci person i’s censoring time due to loss-to-follow-up (possibly 
occurring after 𝜏, in which case the person was observed through the end of study), and let di 
denote an indicator of failure during the study period (d=1), or censoring (d=0).  Denote the time 
of last observation for person i, Ti*, equal to Ti, Ci, or 	𝜏, whichever occurs first.  A person-
oriented data structure for such cohort data may include one row of data per person in the cohort 
study (Figure 1A), which records i, Xi, Zi, 𝜏, Ti, Ci, and di. 
 
An alternative data structure is a person-period data structure in which each person has multiple 
records in the data file. Suppose person i contributes 𝜏 rows of data, where 𝜏 corresponds to the 
number of time periods for person i from study entry until administrative end of study follow-up  
(Figure 1B).  Let j index discrete time from study entry (j=0), and subscript j denote the values of 
variables at time period j.  Denote by Yij a binary time-varying indicator of the outcome status 
associated with person i at period j that takes a value of ‘0’ except at time Ti, when Yij is assigned 



the value of the binary indicator of failure status for person i, di.  In addition, for each record in 
the data structure, we define a time-varying variable, qij that equals 1 for periods, j ≤ Ti*, and 
equals 0 for periods Ti* < j ≤ 𝜏. 
 
By partitioning the study period into narrow time intervals, a data analyst may be able to 
estimate the incidence proportion over each of these sub-periods, with little or no censoring 
occurring during any given interval; and, over a narrow interval of observation, the 
epidemiological cohort data may closely approximate a closed cohort.  Using the term ‘risk set’ 
to refer to the group of people observed at the start of an interval who are at risk of the event, we 
let Pij denote the probability that person i in risk set j will experience the target event during the 
unit time interval j, conditional on their event-free survival up to the start of time interval j 
(Singer and Willett 2003).   
     
4.3.1 Using occupational cohort data to estimate a baseline disease risk function 
Using just the records for person-periods observed among the unexposed (qij=1 and Xi=0), we 
can estimate the baseline discrete time hazard of the outcome (i.e., in the absence of exposure), 
which we refer to as the disease risk score.  Since this is bounded by 0 and 1 over unit discrete 
time intervals, the disease risk score can be modeled as having a logistic dependence on a set of 
predictors by fitting a pooled logistic model to the discrete-time data for the unexposed, X=0, of 
the form  
 
𝑙𝑜𝑔 F G9H|I5(

"J(G9H|I5()
K = 𝜶M + 𝒁,𝜷, 

 
where the vector of parameters, αj, describe the baseline logit hazard function and 𝜷 is a vector 
of parameters associated with covariates Z. The logistic transform implies that the predictor 
variables are linearly associated with the logistic transform of the hazard. Note that product 
terms between the time-scale and covariates can of course be included in the model as well, if 
appropriate. Also note that estimation of a vector of j parameters associated with discrete time 
intervals of the baseline logit hazard function, αj, may be inefficient; and, often a smooth 
parametric function of time, j, might be specified.  Using the estimated coefficients from the 
fitted model, the disease risk scores (Figure 1C) may be calculated for all members of the cohort, 
i, and all periods j as 𝑔(𝑗, 𝒁) = 𝑒𝑥𝑝𝑖𝑡(𝜶UM + 𝒁,𝜷V).   
 
4.3.2 Estimating standardized rate ratios  
Consider a standardized rate ratio contrasting X=1 to X=0 where the target population is those 
exposed at X=1.  The numerator of this discrete time hazard ratio is the observed rate of the 
outcome among those exposed (X=1).  The denominator of this ratio is the expected rate of the 
outcome that would have been observed if, contrary to fact, the exposed (X=1) had been 
unexposed (i.e., set to X=0).   
 
Suppose that we expand the person-period data set to include 2 rows for each person-period: the 
first corresponds to the information needed for estimation of the numerator of the standardized 
rate ratio; and, the second corresponds to information for estimation of the denominator of the 
standardized rate ratio (Figure 1D).  Letting k index these two rows of information for each 
person-period. The expanded data set includes rows indexed by person i, period j, and stratum k.   



 
In this expanded data set, k=1 corresponds to the information needed for estimation of the 
numerator of the rate ratio (Table 1).  Let mijk=1 and nijk=1 correspond to the events and person-
time, respectively, contributed by person i at time j.  Therefore, mijk=1 is a binary indicator of case 
status for person i at period j, Yij; and, nijk=1 is a binary indicator of observed person-time for 
person i at period j, qij. 
 
In the expanded data set, k=0 corresponds to the denominator of the rate ratio (Table 1).  Let 
mijk=0 and nijk=0 correspond to the expected failures and person-time, respectively, contributed by 
person i at period j if exposure had been set to X=0.   We calculate mijk=0 and nijk=0 using the 
disease risk score, g(j,Z), and the survival function S(j,Z).  Therefore, mijk=0= 𝑔(𝑗|𝒁,)𝑆(𝑗|𝒁,); 
and, nijk=0 = 𝑆(𝑗|𝒁,) = 1 − ∑ 𝑔(𝑡|𝒁,)𝑆(𝑡 − 1|𝒁,)

M
W5( , where we define 𝑆(−1|𝒁,) = 1.  

 
A regression model fit to the expanded data structure may take the form, 
 
log[𝐸[𝑚,M_]a = 𝛿"𝑘 + log	(𝑛,M_),  
 
where, using just the records with X=1, the antilog of estimated parameter 𝛿"estimates the 
standardized rate ratio reflecting the observed rate at X=1 to the expected rate among those with 
X=1 had exposure been set to X=0. Estimation of robust confidence intervals are recommended 
given the two stage regression (first estimation of disease risk score and second fitting the 
marginal structural model) (Huber 1967).   
 
In the Appendix to this Alpha project report we provide illustrative SAS code to obtain discrete 
time hazard ratios and associated robust confidence intervals.  
 
 
4.4 Methods for Aim 3 and extensions to assess impacts of occupational policy options  
4.4.1 Policy options (what we can do) 
Suppose that a company owner is interested in the impact of a policy that would lead to a change 
in workers’ exposure to an agent.  For example, suppose that policy A is to leave conditions 
unaffected and as they were in the past.  Policy B is to invest in personal respiratory protection 
just for workers in areas of a worksite where dust levels exceeded a specified limit, m.    Any 
number of proposed policies could be evaluated, but only two will be discussed for simplicity. 
The first step in applied decision theory is to clearly state our options or choices about what we 
can do.  We wish to consider the question, “What would be the impact on the occurrence of 
outcome Y of a policy that affected exposure X?”      
 
4.4.2.  What we know.   
Applied decision theory draws upon what we know; this may involve information drawn from 
external sources (e.g., prior findings) as well as empirical data from an occupational cohort.   
Suppose that we have an occupational cohort of n individuals.  Let i = 1, 2, …, n, index cohort 
members, and let u index time on study.  Let X denote the exposure that will be affected by 
policy B, allowing that it may be time-varying so that we let X(u) denote the exposure level at 
time u.  Let W denote baseline covariates (such as age at hire and sex), and let Y denote a binary 
indicator of the outcome of interest.  Define study entry as time u=0, and denote the time from 



study entry until administrative end of study follow-up as Ti for person i.   Let 𝑇f, ≤ 𝑇, denote 
time to last observation for person i, which will end at the time of death, loss to follow-up, or 
administrative end of follow-up, whichever occurs first. 
 
A discrete time representation of the person-time at risk in the cohort study divides time on study 
into a sequence of contiguous time intervals of uniform duration.  In the resulting data structure 
each cohort member, i, contributes one row of data for each time period of observation, letting u 
index discrete time intervals, from entry time 0 to 𝑇f, (Table 1a).  The binary indicator of the 
outcome of interest takes a value of ‘0’ for each time period of observation for which u<𝑇f,; at the 
last period observation for each person i, a value of ‘1’ is assigned if the outcome of interest was 
observed while a value of ‘0’ is assigned to censored observations (Richardson 2010). This data 
structure is used in standard approaches to epidemiological cohort analyses and allows for 
estimation of the effects of exposure on health outcomes using empirical data.  
 
 
4.4.3. A classical regression modeling approach 
Let  P(Yiu =1) denote the probability that person i will experience the outcome event of interest 
during time interval u, conditional on their event-free survival up to the start of time interval u.  
By partitioning the study period into a sequence of narrow discrete time intervals, we are able to 
estimate the probability of the event, over each of these sub-periods.  Since P(Yiu =1) is bounded 
by 0 and 1, it can be modeled using the data structure in Table 1a as having a dependence on a 
set of predictors as, 
 
𝑙𝑜𝑔 h G(i9j5")

"JG(i9j5")
k = 𝛼3 + 𝛽𝑥,3 + 𝛾"𝑤," + 𝛾p𝑤,p …. Equation 1, 

 
where xiu is the exposure variable of interest, and wi1-wi2 are covariates.   
 
Such a model is a discrete time approach to estimation of a model similar to a Cox proportional 
hazards models for continuous time.  The model in Equation 1 includes parameters 𝛼3 that 
describe temporal variation in the hazard function; in practice, temporal variation in the baseline 
hazard is often modeled more parsimoniously as a polynomial or spline function of the time 
scale.  The output from fitting model Equation 1, is often used to communicate with decision 
makers. For communication with experts, it is standard to report the estimated coefficient, b, 
which corresponds to the change in log relative hazard per unit of exposure of interest, or the 
antilog of b which is the covariate-adjusted discrete time hazard ratio.   
 
To derive simpler summary statistics that are often desired in presentations and communication 
with stakeholders, the estimated coefficients from model Equation 1 sometimes will be used to 
calculate other quantities to express the impact of X on Y in the cohort.   For example, one 
summary quantity is the number of cases that can be attributed to exposure.  This often is 
calculated based on the predicted values for the outcome that are derived using the estimated 
parameters for the fitted model and the covariate pattern associated with each record in the 
person-period file (Appendix 1).  The summation of fitted values over person-periods is reported 
as the predicted number of events; and, by using the estimated parameter values, multiplied by 
the appropriate covariate patterns, one can also estimate the background cases as the predicted 



values for the outcome Y in the absence of exposure (i.e., at X=0), the excess cases (i.e., the fitted 
values minus background cases), and the attributable fraction (excess cases over fitted values).   
 
4.4.4. A counterfactual approach 
An exposure that affects mortality will affect the distribution of person-time in the study cohort; 
therefore, a policy that affects exposure (e.g., reducing X) will affect the time of onset of Y 
(Richardson, Keil et al. 2017.) For example, a policy that reduced hazardous exposure would 
lengthen the average time to death among a cohort of workers and increase the amount of 
person-time accrued in a long term follow-up of those individuals.  Consequently, the classical 
approach described above to calculation of excess cases and attributable fractions, although 
performed in the epidemiological literature, is liable to be misleading for decision-makers 
(Greenland and Robins 1988, Greenland and Drescher 1993, Richardson, Keil et al. 2017) 
because the calculations are based on the observed records in the person-period file (which 
reflect the person-time accrued under the observed exposure conditions, rather than what would 
have been observed under a policy that affected exposure (e.g., reduced exposure).   
  
We propose an alternative approach that frames the estimate of the impact of a policy that leads 
to a change in exposure X on outcome Y in a counterfactual framework.  The following steps are 
taken to make the necessary calculation. 
 
First, an extended data structure (Table 1b) is constructed in which we add to the discrete time 
data structure one record for each person period from 𝑇f, until Ti such that the extended data 
structure includes records for each person period from u=0 through the administrative end of 
follow-up, Ti.   In addition, for each record in the data structure, we define two indicator 
variables: i) a time-varying binary variable, c, that equals 1 for observed person periods, u ≤ T′, 
else 0; and, ii) a time-varying binary variable, f, that equals 1 for observed person periods, u, in 
which person i conformed to the exposure level of a given policy, else 0 (e.g., for a policy 
capping exposure below a specified level m, we would assign f=1 at all times t<=u if 𝑋,(𝑡) ≤ 𝑚, 
else 0).  
 
Second, we fit a weighted logistic regression model with terms to describe temporal variation in 
the baseline hazard and effects of covariates, where we define the weight as cf denoting the 
product of c and f.  We use the fitted logistic model to generated predicated values of the 
estimated probability (hazard) of the outcome for each person-period in the data set. Standard 
statistical packages allow the investigator to output a person-period data structure that now 
includes the predicted value of the outcome, which is the estimated hazard of the outcome for 
each record in the person-period file (Appendix 2). This predicted value is based on the 
estimated parameters for the weighted regression model where the weighting leads to estimates 
based solely on the observed data for those workers who conformed to a given policy. 
 
 
Finally, we use the predicted value of the hazard of the outcome during time interval u to 
calculate the probability of surviving through that time interval, for each person i and time 
interval u.  Given the extended data structure, we can calculate the survival probability of the 
outcome to any time or age. The survival probability is calculated as one minus the product of 
the hazard of the outcome during that time interval and the probability of surviving up to the start 



of that time interval (Appendix 2).  We define the probability of surviving up to the first time 
interval as 1, because our estimates are conditional on survival until entrance into the study.  
Using this information, we can readily calculate the expected risk of death under a proposed 
policy (such as policy B) for a worker. The extended data structure in Table 1b allows for the 
expected risk of death to be calculated to any given attained age or time on study.   
 
This approach readily extends to analyses of cause-specific mortality in which we model two (or 
more) competing risks for mortality (Appendix 3).     
 
4.4.5. Graphical and tabular communication 
The observed and counterfactual person-time and numbers of cause-specific deaths can be used 
as the basis for graphs, charts, figures, and tables that illustrate comparative survival, absolute 
numbers of events, years of life lost, and risk difference in the study population under alternative 
policies, standardized to the baseline covariate distribution of the cohort.    These values can be 
summed over all records to yield estimates of the overall number of deaths and years of life in 
the cohort through the administrative end of follow-up under contrasting policies A and B.  An 
important aspect of decision analysis is representing uncertainty in outcomes under differing 
policy alternatives.  Projections regarding future events, such as the expected numbers of events 
if the cohort were followed to a specified date in the future, are readily generated by extending 
the data structure to include additional records for person-periods that span the desired time 
period. 
 
4.5 Implementation in this Alpha Foundation project 
During this project we established data access agreements and developed a process for working 
together on analyses.   We identified 28,546 miners employed in uranium mining in Ontario for 
at least 1 week between 1954 and 1996, obtained work history, exposure, and mortality follow-
up information for these workers.   We created an analytical file of person-time of observation 
from date of entry into the analysis until end of follow-up or administrative censoring of workers 
alive at age 90 years. As proposed, all of the aims were addressed using this analytical data 
structure.  As proposed, Dr. Richardson led the development of statistical methods, pilot testing 
development of statistical software code for proposed work, and fit models by collaborating with 
partners at OCRC. Analyses were run on computers at OCRC under the direction of Drs. Demers 
and Arrandale, with Colin Berrault performing the computer runs.  Summary output was shared 
with Dr. Richardson.  
 
Using information on estimates of annual radon progeny exposure in this cohort, we considered a 
policy B that caps annual exposure to radon using the time-varying exposure compliance 
variable f.   Using the approach described above, we fit a model with terms for year of birth and 
attained age, and estimate survival times and deaths under the policy cap. We use the resultant 
values as the basis for graphs, charts, figures, and tables that illustrate comparative survival, 
absolute numbers of events, years of life lost, and risk difference in the study population under 
alternative policies.  We further extend the calculations to examine cause specific mortality and 
further illustrate comparative cause-specific survival, rank ordering of leading causes of death 
under different policies, and survival. 
 
 



 
5. Results, Summary of Accomplishments, Conclusions and Impact Assessment 
We illustrated Aim 1 methods using data for a cohort of men who entered follow-up of miners 
study in 1954 and were followed through 2007 to ascertain deaths.  The expected number of 
deaths due to all causes were calculated.  Extending this to a competing risks framework in Aim 
2, we calculated expected numbers of deaths due to all causes and due to lung cancer.   
 
Table1.  Male miners followed until 2007. 
 Proposed calculations 

Outcome Observed 
(Policy 1) 

Expected 
(Policy 2) 

All causes 8572 9280.8 
Lung cancer 1246 1407.3 
Cardiovascular 
disease 

2788 
 

4468.1 
 

 
The person-time observed in the cohort was 1,005,194 person-years; reducing occupational 
exposure would extend working life in the cohort yielding a standardized estimate of 1,027,592 
years. 
 
Figure 1. number of years of life lost in the cohort; and,  

 
 
 
Extending this to policies affecting a quantitative occupational exposure estimate, as in Aim 3, 
we first consider a standard regression analysis of these data; this regression model yields an age 
and birth cohort conditional estimate of the association between the natural log of cumulative 
exposure and all cause mortality, with the estimated coefficient 0.09 (se=0.02) (Table 2).  If we 
use the model coefficients, we calculate 216 excess deaths among those who were exposed, 
yielding an estimate of 3% attributable fraction (table 2).   
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Next, consider policy B that removes exposure (i.e., 0 WLM per year). Table 3 reports estimates 
of the impact of such a policy.  The values in table 3 account for the fact that a reduction in 
exposure would not prevent the inevitability of death, but rather delay it.  Under this policy 8176 
deaths would be expected, as compared to the 8346 deaths observed (table 3) by ag 85 years.  
This suggests 170 excess deaths, in contrast to the 216 excess deaths suggested by the calculation 
in Table 2. A calculation of the excess deaths divided by the total observed deaths suggests an 
attributable fraction of deaths of about 2%, smaller than the value of 3% reported in table 2.  
However, while eliminating radon progeny exposure leads to a small change in the number of 
deaths in the cohort by the end of study follow-up, it leads to greater longevity among the 
workers.  As also shown in table 3, the expected number of person-years observed under policy 
B (limiting exposure) is 13,319 person-years greater than the number observed in the cohort 
under policy A .  Under policy B, deaths tend to occur at older ages and there is an increase in 
years of life expected overall in the cohort (approximately 6 additional months of life per worker 
in the cohort).    
 
Figure 1 illustrates a comparative survival curve, which shows that by attained age 85 years, the 
percentage of workers dead under either policy is about equal.  However, the percentage of the 
workforce dead at age 65, 70, and 75 is lower under the policy that limits exposure.   Most of the 
years of life gained under policy B occur among people in the 60s and 70s (Figure 2).   
 
Table 2 also shows cause-specific mortality for lung cancer and other causes, under policies A 
and B.  The number of lung cancer deaths is substantially reduced under policy B compared to 
policy A (262 fewer lung cancer deaths); in contrast, the number of deaths due to other natural 
causes is increased.  Figure 3 illustrates that policy B shifts the distribution of deaths between 
categories of cause of death.  Removing a lung carcinogen may reduce one (or more) cause of 
death – but in the long run the competing causes of death will lead to an increase in other causes 
(and perhaps no long term reduction in cumulative mortality).  The cause specific cumulative 
mortality functions illustrate that under policy B the cumulative incidence of lung cancer does 
not increase as steeply (red line) but other causes of death contribute to causes of death in its 
stead.  Table 2 may help a decision maker consider the role of values/goals in choosing between 
policy options.  The rank order of causes of death may be anticipated to shift substantially when 
we use counterfactuals (table 2).  We must therefore be clear about which outcomes we prefer, 
reflecting a set of values inherent in decision making. 
 
 
  



Table 2. Parameter estimates, fitted values, background, excess, and attributable fraction of 
deaths obtained by fitting a logistic regression model to the discrete time cohort data.   

 Parameters Fitted values 
Parameter Estimate Standard Error  
Intercept -5.62 0.03  
age * 0.074 0.00  
age2 0.0001 0.00  
age3 -0.00004 0.00  
born ≤ 1925 0.31 0.03  
1925 < born ≤ 1935 0.102 0.03  
cumulative exposure /100 † 0.0934 0.0231  
    
Background cases (BK)   8130 
Excess cases (EX)   216 
Attributable Fraction (EX/[EX+BK])    0.03 

* Attained age up to 85 years. 
† Cumulative WLM under a 10 year lag. 
 
 
Table 3. Expected deaths in the absence of exposure, excess deaths, and attributable fraction of 
deaths based on the counterfactual failure times.  Cohort of underground miners. 

Observed (policy A) Expected under policy B Difference (B-A) 
Person-
years 

Deaths Person-
years 

Deaths Person-
years 

Deaths 

998,510 8,346 1,011,829 8,176 13,319 -170 
 Circulatory 

disease 
2,711  Circulatory 

disease 
2,781  Circulatory 

disease 
70 

 Cancer 
excl lung 

1,508  Cancer 
excl lung 

1,554  Cancer 
excl lung 

46 

 Lung 
cancer 

1,230  Lung 
cancer 

968  Lung 
cancer 

-262 

 COPD 334  COPD 348  COPD 14 
 

 
 
 
  



Figure 1. Cumulative mortality by attained age under policy A (red line) and B (blue line). 

 
 
  
  
 
Figure 2.  Causes of death shifting. Distribution of deaths under policy A and under policy B by 
cause of death.   

 
 
 



Figure 4. Cause-specific cumulative incidence curves by cause. Red=lung, Orange=other cancer, 
Yellow=circulatory disease, Green=COPD, Blue=pneumonia   

  Policy A (observed) 

 Policy B (expected) 
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7.0 Appendices 
 
7.1 Aim 1.   
The expected number of deaths in a cohort of male workers can be obtained by multiplying the 
appropriate age- and calendar period-specific reference rate by the units of person-time 
contributed by each person over the period of study. These products are summed over all person-
periods that were contributed by all individuals to obtain the expected number of deaths.  The 
program below calculates the expected number of deaths due to all causes in two ways: first 
using the g-method; and, second using the classical SMR method. 
To do these calculations, a person-period file is constructed with one record for each person-
period from study entry until the administrative end of follow-up. For example, if the 
administrative end of follow-up is 31December 2007 then we have a record for each person-
period until that date (regardless of whether a given person survives until the end of follow-up). 
The attained age and calendar period associated with each person-period is determined by the 
time on study and the person’s age at entry and calendar date of entry into the study.  The SAS 
program shown below is used to calculate the expected numbers of deaths in a single pass 
through the data. 
 
7.1.1.   SAS code for all cause mortality calculations  
Assume the study data consist of a person-period file, named DS.  Each person is identified by a 
unique study id, i. There is one record per unit of person-time, with time indexed by the variable 
u which takes a value of 0 at study entry and increases monotonically until time Ti, the 
administrative end of follow-up.  Each record of this dataset includes the following:  
i, a unique study id for each person;  
u, a variable that indexes potential follow-up time, from 0 at study entry to T at end of the study 
follow-up; 
age, a variable equal to age-at-entry plus u,  
period, a variable equal to date-of-entry plus u;  
c, a binary variable that equals 1 for time prior to date of last observation (u ≤ T′), else 0 
rate, reference death rate, expressed in deaths per person-year at risk (e.g., reference rate for the 
sex group of subject i, and the 5-year age and calendar period intervals associated with follow-up 
time u);  
lu, unit of person-time (e.g., 1 if each record represents one person-year).  
 
The data are sorted by i and u.  



The following code calculates E, the g-estimate of the expected number of deaths if the cohort 
had experienced the reference hazard rate.  The code also calculates Q, the expected number of 
deaths using the classic SMR method. 
data MR ;  
set DS end=eof ;     
 by i u ; 
retain S_i expected_i expected_smr_i  E Q;  
if _n_=1 then do;   E=0; Q=0; end; 
if first.i then do;   S_i=1; expected_i=0; expected_smr_i=0; end; 
expected_i=expected_i+ (rate * S_i * lu); expected_smr_i= expected_smr_i + (rate * c * lu); 
S_i=1-expected_i ; 
if last.i then do ;  E=E+expected_i;  Q=Q+expected_smr_i;  end; 
if eof then output MR; run; 
  
proc print data=MR ;  var E Q; run; 
 
 
 
7.2. Aim 2.  Competing risks. 
Suppose that the dataset, DS, also includes the variables rateA and rateB, reference death rates 
for causes A and B,	expressed in deaths per person-year at risk (e.g., reference rates for causes A 
and B for the race and sex group of subject i, and the 5-year age and calendar period intervals 
associated with follow-up time u).  The data are sorted by i and u.  
 
The following code calculates E and Q for a specific cause of death, A, allowing for mortality 
due to competing causes, B. 
 
data MR ;  
set DS END=EOF ;     
by i u ; 
 retain S_i expectedA_i expectedB_i expected_smr_i   E Q ;  
if _n_=1 then do;  E=0; Q=0; end; 
if first.i then do;  S_i=1; expectedA_i=0; expectedB_i=0; expected_smr_i=0; end; 
expectedA_i=expectedA_i+ (rateA * S_i * lu); expectedB_i=expectedB_i+ (rateB * S_i * lu); 
expected_smr_i= expected_smr_i  + (rateA * c * lu); 
S_i=1-expectedA_i-expectedB_i ; 
if last.i then do ;   E=E+expectedA_i;   Q=Q+expected_smr_i; end; 
if eof then output MR; run; 
  
proc print data=MR ; var E Q; run; 
 
7.3. Calcuation of counterfactual failure times and events with quantitative exposures   
A logistic regression model can be fit to the discrete time data.   The model is weighted so that 
the estimated parameters are based on records for observed person-periods during which workers 
had consistently conformed to the policy.  We use the resultant estimates of the discrete time 
hazard to calculate counter factual failure times and events under the policy of interest for each 



cohort member, i, under policy a.  Let 𝑆*(𝑢|𝑾,) denote the probability of surviving through 
time u (i.e., one minus the probability of being dead by time u).  We define  𝑆*(−1|𝑾,) = 1, 
and then can proceed to calculate survival through each person-period for subject i as one minus 
the product of the discrete time hazard in each period, ha(t|W), and the survival through the 
preceding period, 
 
 𝑆*(𝑢|𝑾,) = 1 − ∑ ℎ*(𝑣|𝑾,)𝑆*(𝑣 − 1|𝑾,)𝐿(𝑣)3

45( , 
 
where L(v) equals 1 in our example, given uniform durations of person-periods in our data 
structure.   We can calculate the probability of being dead by time u if policy a had been 
implemented as, 𝑌*(𝑢|𝑾,) = ∑ ℎ*(𝑣|𝑾,)3

45( 𝑆*(𝑣 − 1|𝑾,)𝐿(𝑣). 
 
proc logistic data=Table1b;  
 model Y(event='1')= t w1 w2;  
 weight cf; 
 output out = table1c p = h; run; 
 
 
data table1d;  
  set table1c;    
  by i u ; 
  retain S_u D_u;  
  if first.i then do; S_u=1; D_u=0; end; 
    delta_D_u = (h * S_u ); 
    D_u = D_u + (h * S_u );   
  output table1d;   
    S_u = 1 - D_u ; run; 
 
 
7.4.  Aim 3 methods extended.  Calculation of counterfactual failure times and events for 
cause-specific mortality under altenrative policy options.  
 
Suppose there are 2 categories of cause of death of interest, Y1 and Y2, where category Y2 
denotes death due to all causes other than categories Y1.  Let  ℎr*(𝑡|𝑾) denote the discrete time 
hazard rate of outcome 1 at time t under policy a, and ℎrr* (𝑡|𝑾) denote the hazard of outcome 2 
under policy a.  Under our proposed approach, each hazard function is estimated by a regression 
model fit to the empirical data for those who comply with the policy. Under this setting of 
competing risks, survival is calculated simply by extending the expression to include all 
categories of cause death,  
 
Sa(u|Wi)=1 − {∑ ℎr*(𝑣,𝑾,)𝑆*(𝑣 − 1,𝑾,)𝐿(𝑣)3

45( + ∑ ℎrr* (𝑣,𝑾,)𝑆*(𝑣 − 1,𝑾,)𝐿(𝑣)3
45( }. The  

 
approach readily extends from two categories to any number of categories (as long as they are 
mutually exclusive and exhaustive, such that they encompass all causes of death).  Below, we 
illustrate calculations using the SAS package. 
 
%let n=2;  
 
%macro models; 
%let cnt=0; 



data m0; set table1b; 
%do %while (&cnt<&n); 
proc logistic data=m&cnt;  
%let cnt=%eval(&cnt+1); 
model Y&cnt(event='1')=t w1 w2; weight cf; output out = m&cnt p = h&cnt ; run;  
%end; 
%mend; 
%models; 
 
proc sort data=m&n; by i u; run; 
 
data MR MRunit;  
set m&n END=EOF ;    
by i u ; du=1;   
array expi{*} expected_i1-expected_i&n; 
array ec{*} ec1-ec&n; array rate{*} h1-h&n; 
array hexpi{*} hexpected_i1-hexpected_i&n; 
retain S_i expected_i1-expected_i&n  Ec1-Ec&n P_i P;  
if _n_=1 then do; do a=1 to &n; ec{a}=0; end; P=0; CP=0; end; 
if first.i then do; S_i=1; do a=1 to &n; expi{a}=0; end; P_i=0; end; 
do a=1 to &n; 
expi{a}=expi{a}+ ( rate{a} * S_i * du); hexpi{a}= ( rate{a} * S_i * du); end; 
P_i =P_i + (S_i * du) ;    
hP_i = (S_i * du) ;  * hold counterfactual person-period length; 
S_i=1-sum(of expected_i1-expected_i&n);  
output MRunit; 
if last.i then do; do a=1 to &n; ec{a}=ec{a}+expi{a}; end; P=P+P_i; end; 
if eof then output MR; run; 
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In this addendum, we discuss communication of findings in graphical and tabular formats.    
 
Decisions about possible interventions to improve miners’ health and safety require reasonable 
estimates of the intervention’s impact, an indication of where impact can be made, and how big 
of an impact an intervention may have in terms of disease, disability, and mortality.  In our 
project, we established quantitative statistical methods for calculation and ranking of cause-
specific excess disease in a contemporary framework for valid decision making.     
 
For example, consider a decision-maker who is contemplating a policy change that would reduce 
hazardous exposure on-the-job.  For example, suppose that policy A is to leave conditions 
unaffected and as they were in the past.  Policy B is to invest in respiratory protection.  If an 
occupational agent is hazardous then reduction of exposure to the agent may lengthen the 
average time to death among members of a cohort of workers.  This will increase the amount of 
person-time accrued in a long term follow-up of those workers because reduction of hazardous 
exposures will lead to an increase in longevity.  In the long-run regardless of whether these men 
and women are exposed to the occupational hazard they will die.  A reduction in occupational 
hazards does not prevent mortality.  Rather, it may affect when death occurs, and potentially alter 
what cause a worker will die from.   
 
When assessing the impact of a policy, we propose examining the policy’s impact on longevity 
and the expected distribution of causes of death.   Below we illustrate how graphs, charts, and 
tables of comparative survival, absolute numbers of events, years of life lost, and risk difference 
in the study population under alternative policies.   
 
To illustrate, we use information about a cohort of 28,546 miners employed in uranium mining 
in Ontario for at least 1 week between 1954 and 1996,  and were followed through 2007 to 
ascertain deaths. We considered a policy to effectively remove exposure to radon (i.e., 0 WLM 
per year). We note that the reported comparisons are ‘fair comparisons’ with regards to factors 
such as age, race, and sex because they are standardized to the baseline distribution of these 
factors in the occupational cohort.     
  
 

The expected number of deaths due to all causes were calculated.  Extending this to a competing 
risks framework in Aim 2, we calculated expected numbers of deaths due to all causes and due to 
lung cancer.   
 
The person-time observed in the cohort was 1,005,194 person-years.  Reducing occupational 
exposure would extend life in the cohort yielding an estimate of 1,027,592 person-years.   Figure 
1 illustrates the gain in life expectancy. The red bars in the bar chart illustrate the number of 
person-years of life in each category of attained age that were observed in the cohort.   The blue 
bars in the bar chart illustrate the number of person-years of life in each category of attained age 
that would be expected in the cohort if the policy to cap radon exposure had been in place.  The 
blue bars are as high or higher than the red bars in each category of age, indicating that if the 
protective occupational policy had been in place there would be more workers alive at each 
attained age. 
 



Figure 1. number of years of life lost in the cohort; and,  

 
 
 
 
In the occupational cohort 8346 deaths were observed (Table 1).  Next, consider the number of 
deaths under policy B.   Under this policy 8176 deaths would be expected (table 3) by age 85 
years.  This suggests 170 excess deaths.  The number of lung cancer deaths is substantially 
reduced under policy B compared to policy A (262 fewer lung cancer deaths); in contrast, the 
number of deaths due to other natural causes is increased.   
 
 
  
Table 1. Expected deaths in the absence of exposure, excess deaths, and attributable fraction of 
deaths based on the counterfactual failure times.  Cohort of underground miners. 

Observed (policy A) Expected under policy B Difference (B-A) 
 Deaths  Deaths  Deaths 
 8,346  8,176  -170 
 Circulatory 

disease 
2,711  Circulatory 

disease 
2,781  Circulatory 

disease 
70 

 Cancer 
excl lung 

1,508  Cancer 
excl lung 

1,554  Cancer 
excl lung 

46 

 Lung 
cancer 

1,230  Lung 
cancer 

968  Lung 
cancer 

-262 

 COPD 334  COPD 348  COPD 14 
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Figure 2 illustrates that policy B shifts the distribution of deaths between categories of cause of 
death.  Removing a lung carcinogen may reduce one (or more) cause of death – but since we all 
die in the long-run – the workers in the cohort will eventually experience an increase in other 
causes of death.   
 
 
Figure 2.  Causes of death shifting. Distribution of 1576 deaths under policy A and 1547 under 
policy B by cause of death.   

 
 
 
  
Table 1 and Figure 2 may help a decision maker consider the role of values/goals in choosing 
between policy options.    We must be clear about which outcomes we prefer, reflecting a set of 
values inherent in decision making. 
 
 




