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1.0  Executive Summary 
 

In 2019 we completed an Alpha Foundation Proof-of-Concept Technology Development 
project entitled "Improving Communication in Noise for Miners Wearing Hearing Protection" 
(AFC518-10).  As a result of this study, the Foundation contracted that we undertake "further 
proof-of-concept development such that it can reach a level whereby sufficient confidence can 
be ascertained to justify continued advancement to a functional prototype that could be 
demonstrated in an actual mine or high-fidelity simulated mine environment".  In particular, 
refinement of the algorithms was required for "different environmental noises, different sound 
levels and different signal to noise ratios to determine the capacity to preserve speech 
intelligibility in a broader range of conditions particularly those that are emblematic of the 
frequency spectrum of typical mine noises (especially from mine machinery that may be 
intermittent and variable in intensity)".  These statements define our mission for the present 
work. 

In our previous study for the Foundation, we developed a family of algorithms designed to 
improve the intelligibility of speech.  All commenced by dividing the input sounds into separate, 
contiguous frequency "subbands" using a set of band-pass filters arranged in parallel.  Within 
each subband there are separate signal paths and control paths that operate in parallel.  The 
former contains the components of speech and environmental noise within the bandwidth of the 
subband, while the latter contains the signal processing we design to improve speech 
understanding by modifying the former. 

In our initial study the results obtained by directly changing, or modulating, the amplitude of 
the sounds in the signal path were encouraging.  An alternative to the linear modulation for 
controlling the amplitude of signals in individual subbands used in direct modulation (DM) is to 
employ binary modulation in which the gain is either switched "on" or "off" (commonly described 
as applying a binary mask (BM)).  The method has been reported extensively in the scientific 
literature for circumstances in which speech and environmental noise can be obtained 
separately, in which case the processing is described as applying an ideal binary mask (IBM).  
This situation does not occur during face-to-face communication in mining (speech and noise 
are always intermixed and never available separately).  However, it could occur when listening 
in a mining environment to a remote talker over a wireless or wired link using a communication 
headset or electronic hearing protection device (eHPD).  Thus a study of both an IBM and a BM 
provides valuable insights into the potential benefits of applying binary masking to improve 
communication in mines. 

The assessment of the performance of algorithms developed in this study was by listening 
tests.  Now, conventional listening tests require subjects to come to our facilities on campus.  
However, many volunteers were unwilling to come to the university during the COVID-19 
pandemic.  For this reason we have developed and validated a web-based listening test for 
subjects to undergo at home, or elsewhere, and demonstrated that it is an adequate alternative 
to performing tests on campus for persons with normal hearing. 

The performance of algorithms involving direct linear modulation (DM) and binary 
modulation both with and without access to speech and noise separately (i.e., IBM and BM 
algorithms, respectively), has been established in different noises and at different speech 
signal-to-noise ratios (SNRs).  The noise of a continuous miner and roof bolter were selected to 
represent mining noises, and a generalized industrial-like noise was also used in the 
development of algorithms.  The noises possessed different frequency spectra that enabled the 
performance of the algorithms to be determined in noise environments believed to be typical of 
those found in mines. 

The use of different SNRs in the listening tests implies that they were performed at different 
sound levels.  Moreover, the conduct of listening tests under three different experimental 
configurations - one conducted under controlled conditions within a controlled environment 
supervised by trained audiologists, a second conducted in an audiometric room in our laboratory 
in which subjects themselves fitted their earphones with assistance if necessary, and a third 
conducted commonly at home where subjects chose the headphones or earphones to wear and 
the sound level for the tests - also introduced an uncontrolled range of sound levels into each 
test. 

Under all the operating conditions imposed by the listening tests, including continuous and 
intermittent noises, our IBM algorithm improved speech intelligibility over that without signal 



processing.  The results included large increases in word scores under the most difficult 
listening conditions (up to 37%), when the noise was loudest, and no reduction in intelligibility 
when there was little or no noise to compromise intelligibility.  The benefit to a user of this 
technology occurred for all conditions we evaluated listening to speech in noise.  When the 
unprocessed word score is high, say 80 - 90% words correct, little improvement in intelligibility is 
required to aid conversation, and so the processed word score is only slightly greater than the 
unprocessed score.  Conversely, when the unprocessed word score is low, say 30 - 40% words 
correct, substantial improvement in intelligibility is required to aid the listener understand the 
speech, and the IBM algorithm delivers word scores in the range of 70% words correct.  This is 
a marked improvement that can be expected to greatly influence communication and workers' 
safety.  Consequently we believe this algorithm can be used effectively under all listening 
conditions in noise to improve speech intelligibility, and has demonstrated the functional 
capability for in-service operational application to situations in which speech and noise are 
available separately. 

The DM and 24-subband BM algorithms produced smaller improvements in speech 
intelligibility compared to that without signal processing than the IBM.  Both algorithms improved 
intelligibility under almost all listening conditions and all noises used, with word scores 
increasing by up to 10%.  While smaller improvements were expected for both algorithms, they 
nevertheless confirm the potential for improving speech intelligibility by our signal processing 
during face-to-face communication, when speech and noise are intermixed and never available 
separately.  Implementation of either of these algorithms in a communication headset or an 
eHPD would immediately provide modest improvements in intelligibility, but both DM and BM 
would benefit from further refinement.  Based on the work reported here and the algorithms 
evaluated in our previous study for the Alpha Foundation, it is not clear how the DM algorithm 
could be modified to improve its performance.  However, it should be possible to improve the 
performance of the BM algorithm to approach that of our IBM algorithm described above.  
Accordingly, the limitations of the BM algorithm are being addressed after the completion of this 
study and progress is described in an Appendix. 

Even after an algorithm is developed that can increase the intelligibility of speech "buried" in 
noise, it must be transferred to electronics capable of microminiaturization.  The computational 
complexity of 24-subband algorithms will require careful implementation to function throughout a 
work shift within a small, lightweight package suitable to be worn as part of a miner's equipment 
or attached to, or integrated into, a miner's helmet.  We judge the Technology Readiness Level 
of the proof-of-concept to be level TRL 3 ("Analytical and experimental critical function and/or 
characteristic proof of concept" - NASA usage, and "Experimental proof of concept" - European 
Union usage of the current nine-unit scale). 



2.0  Technology Description and Mission Statement 
 
2.1 Mission Statement 

In January 2019, we completed an Alpha Foundation Proof-of-Concept Technology 
Development project in the focus area of Advanced Personal Protective Equipment entitled 
"Improving Communication in Noise for Miners Wearing Hearing Protection" (AFC518-10).  Our 
mission was to develop a method for improving communication in noise suitable for miners 
wearing a hearing protection device (HPD), in order to reduce confusion identifying spoken 
words and increase the audibility of warning sounds.  These improvements should reduce the 
risk of miners being struck by moving equipment and errors in speech communication between 
co-workers. 

We noted in our Final Technical Report that the performance of our algorithms remains to 
be established for different talkers, different environmental noises, different sound levels, and 
different speech signal to noise ratios (SNRs).  These limitations of the original work were 
recognized by the Alpha Foundation project review.  In consequence, the Foundation contracted 
that we undertake "further proof-of-concept development such that it can reach a level whereby 
sufficient confidence can be ascertained to justify continued advancement to a functional 
prototype that could be demonstrated in an actual mine or high-fidelity simulated mine 
environment".  In particular, refinement of the algorithms is required for "different environmental 
noises, different sound levels and different SNRs to determine if the capacity to preserve 
speech intelligibility in a broader range of conditions particularly those that are emblematic of 
the frequency spectrum of typical mine noises (especially from mine machinery that may be 
intermittent and variable in intensity)".  The additional proof-of-concept required by the Alpha 
Foundation's review of our original study defines our mission statement for the present study. 

The end goal of the technology being developed is to implement the algorithms within a 
small, lightweight electronics package that could function effectively throughout a work shift and 
be worn as part of a miner's equipment or attached to, or integrated into, a miner's helmet.  It is 
envisaged that the device would otherwise function much like current-day sound level 
dependent electronic hearing protectors, which have been gaining popularity in recent years.  

 
2.2 Health and Safety Mining Need 

The US mining industry has the highest prevalence of hazardous workplace noise 
exposures of all industrial sectors (Tak et al., 2009).  According to the National Institute of 
Occupational Safety and Health (NIOSH), one in four miners have a hearing problem and, by 
retirement age, four out of five mine workers have impaired hearing.  The unwillingness of 
workers to wear commercially available HPDs because of fear they will not be able to 
understand co-workers speech or hear warning sounds has been repeatedly documented in the 
literature (for reviews, see Suter, 1992; Suter 2001).  This contributes to the avoidance of 
hearing protector use by up to 50 % of some noise-exposed worker groups (McKinley et al., 
2005; Morata et al., 2001).  In miners' focus group sessions, the priority of underground survival 
was ranked well above the "nuisance" of hearing loss (Murray-Johnson et al., 2004; Patel et al., 
2001).  As succinctly stated by Azman and Hudak (2011), "miners often complain of reduced 
audibility or confusion identifying spoken words when wearing conventional hearing protectors.  
This leads to an increased risk of miners being struck by moving equipment or errors in 
communication with co-workers". 

Failure to hear environmental and warning sounds is an additional concern for job safety for 
miners with subclinical hearing loss (Morata et al., 2005), which compromises audibility and has 
long been associated with increased risk of injury in a noisy workplace (for review, see Wilkins 
et al., 1987).  In a study focusing on hearing acuity, noise and hearing loss accounted for more 
than 40% of the injuries occurring in a shipyard (van Charante et al., 1990).  The elevated risk of 
injury when wearing existing commercial HPDs even for persons with normal hearing has also 
been documented (Choi et al., 2005).  In their study of agricultural injuries, the relative risk of 
injuries to workers wearing HPDs was 2.2, and was independent of their hearing acuity.  
NIOSH's National Traumatic Occupational Facility Surveillance System records 204 accidental 
deaths of pedestrians in industry struck by forklifts from 1980 to 1994 (Collins et al., 1999).  
While the causes of these accidents cannot be deduced, a Fatality Assessment and Control 
Evaluation (FACE) report of a worker wearing an HPD, who died after being run over by a log 



loader reversing with its back-up alarm sounding, would appear to be an example of the failure 
to identify the warning sound (Anon, 1995). 

NIOSH in its Criteria for a Recommended Standard: Occupational Exposure to Noise 
identified the "persistent problems" of HPDs, concluding that "Research should also lead to the 
development of hearing protectors that eliminate troublesome barriers by . . .  improved speech 
intelligibility and audibility of warning signals" (Anon, 1998, p. 71).  In this study, we have 
focused on reducing communication problems when the talker is in the same environment as a 
listener, and consequently on methods for improving the intelligibility of face-to-face speech 
communication suitable for users of hearing protection.  A secondary consideration has been 
situations in which the talker communicates with a listener over a wireless or wired link, and is 
not subjected to the intensity of noise experienced by the listener.  A successful method, or 
methods, would enable the development of improved HPDs that incorporate the appropriate 
electronic processing of sounds (eHPDs).  Such devices could ultimately lead to greater 
acceptability, and consequently wider use, of eHPDs in mines, hence reducing the risk of noise-
induced hearing loss and accidents. 

 
 

3.0  Technology Description and Design Strategy  
 

3.1 Shortcomings of Previous Technology Approaches 
While there have been numerous attempts to reduce the noise of machinery used in 

mechanized mining, it is generally recognized that many miners remain potentially overexposed 
to noise (Babich and Bauer, 2006; Joy and Middendorf, 2007).  During the last twenty years, 
specialized hearing protectors have been developed for situations in which noise levels change 
in space or with time, such as when walking towards or around a machine or when a nearby 
vehicle moves or stops operating.  In these circumstances, the device automatically adjusts the 
amount of hearing protection to enable the user to hear more sounds in the environment when 
there is less environmental noise.  These so-called sound level dependent HPDs (sometimes 
called level dependent HPDs, or sound restoration HPDs) are gaining popularity, and their 
applicability to mining environments has been studied (Azman & Hudak, 2011).  Several have 
been approved by the Mines Safety and Health Administration for use underground (see 
reference to website).  They employ electronically-controlled sound transmission from the 
environment surrounding the user to the ear, and for this purpose include a microphone outside 
the eHPD, processing electronics, and a miniature earphone or loudspeaker located in the ear 
cup or earplug.  For listening to remote talkers, there is also a wireless or wired link in some 
eHPDs.  While the technology can improve face-to-face communication when the noise levels 
are low, current devices fail to improve the intelligibility of speech in the presence of loud noises, 
such as those occurring in underground mines (e.g., from continuous mining machines, or roof 
bolting machines), compared to when conventional hearing protectors are worn (Azman & 
Hudak, 2011).  The same conclusion has been drawn in other studies using different 
environmental noises (Dolan & O'Loughlin, 2005; Plyler & Klumpp, 2003), though not in a 
survey of HPD preferences in an industrial setting (Tufts et al., 2011).  When the environmental 
noise is sufficiently loud, a level dependent HPD is designed to cut-off electronically all sounds 
from outside the eHPD, so speech from a nearby talker as well as the noise will not be heard.  
The methods developed here are intended to improve communication in all situations. 

There have been several attempts reported in the literature to improve face-to-face 
communication in a noisy environment, mostly intended for application to hearing aids.  A recent 
study has described a method for reducing noise (as opposed to improving intelligibility) when 
wearing eHPDs and attempting to communicate face-to-face in a noisy environment (Lezzoum 
et al., 2016).  The method involved first dividing the frequency spectrum of the sounds (i.e., the 
combined speech plus environmental noise) into narrow bands of frequencies, commonly 
termed "subbands".  The instantaneous magnitude of the envelope of the signal in each 
subband was then used to control the instantaneous gain applied to the signal in that subband.  
The subbands signals were then recombined and the processed sounds formed an audio signal 
whose properties could be evaluated or presented to a listener.  The complete process was 
ongoing, leading to a time-varying gain in each subband based on the envelope of the sound 
pressure in that subband.  Lessoum et al. (2016) observed that listeners reported hearing 
reduced noise and improved sound quality when the speech was initially mostly intelligible. 



A method for simultaneously reducing the environmental noise at the ear and improving the 
intelligibility of speech from a remote talker when the listener is wearing an eHPD has been 
described by Brammer et al. (2014).  Substantial improvements in speech intelligibility were 
obtained using subband active noise control (SANC) to increase the speech SNR at the ear.  
Thus, SANC provides an alternate approach for producing time-varying subband gains, but has 
received little attention in the literature for improving communication. 

For stand-alone devices (i.e., devices without access to remote computational resources), 
two methods for changing the gain have been commonly reported in the literature.  The first, as 
already described, involves direct modulation (DM) (Apoux et al., 2004; Chung et al., 2009; 
Clarkson and Bahgat, 1991; Langhans and Strube, 1982; Lezzoum et al., 2016; Lorenzi et al., 
1999; van Buuren et al., 1999; Wiinberg et al., 2018), and the second involves binary 
modulation or, as it is frequently called, binary masking (BM).  In the latter method, the control 
signal switches the gain applied to a given subband on or off, depending on whether the sounds 
in the subband contain mostly those desired to be heard (switch "on") or undesired noise 
(switch "off"). 

Overall, the results obtained in studies approximating "real-world" conditions have been 
inconsistent, with some finding a small improvement in intelligibility under some conditions of 
speech SNR (Clarkson and Bahgat, 1991; Lorenzi et al., 1999; Wiinberg et al., 2018), up to 
~10% improvement for some SNRs and noises (Apoux et al., 2004; Chung et al., 2009), and 
other studies finding no improvement (Clarkson and Bahgat, 1991; Langhans and Strube, 1982, 
van Buuren et al., 1999).  When speech and noise are in separate environments, such as when 
listening to a remote talker over a radio link, substantial improvements in intelligibility can be 
obtained, reaching as much as ~50% with undisclosed computational resources (Anzalone et 
al., 2006; Arehart et al., 2015; Brungart et al., 2006; Kim et al., 2009; Kjems et al., 2009; LI and 
Loizou, 2008; Wójcicki and Loizou, 2012). 

Our challenge is to approach the best performance recorded elsewhere with algorithms that 
can be implemented in a small, stand-alone electronic package that could be worn by a miner 
throughout a work shift. 
 
3.2 Rationale and Design Strategy for the Proposed Approach 

In past work for the Alpha Foundation, we have developed a family of algorithms designed 
to improve the intelligibility of speech in noise (see Algorithm Development in the Revised Final 
Technical Report to Grant AFC518-10, 2019).  All our algorithms commence by dividing the 
input sounds into separate, contiguous frequency subbands using a set of band-pass filters 
arranged in parallel.  The frequency range chosen is from 200 Hz to 6 kHz.  As previously 
described, within each subband there is a signal path and a control path that operate in parallel.  
The signal path contains the components of speech (or warning sounds) and environmental 
noise with frequencies that fall within the range of the corresponding band-pass filter.  The 
control path contains signal processing designed to improve speech understanding, and first 
forms the envelope of the sounds in each subband.  It is the envelope waveform that we use to 
linearly amplitude modulate the speech in noise contained in the signal path. 

Our initial results using direct modulation were encouraging, and for this reason we have 
continued to refine the method.  We have also considered an alternative to linear modulation for 
controlling the gain of signals in individual subbands and for this purpose have explored binary 
modulation.  The method has been reported extensively in the literature for circumstances in 
which speech and environmental noise can be obtained separately, in which case it is termed 
an ideal binary mask (IBM).  This situation does not occur during face-to-face communication in 
mining (speech and noise are always intermixed and never available separately).  However, it 
could occur when listening in a mining environment over a wireless or wired link to a remote 
speaker using a communication headset or eHPD.  Thus a study of both an IBM and a BM 
provides valuable insights into the potential benefits of applying binary modulation to improve 
communication in mining environments. 

A concept block diagram for improving communication using an IBM is shown in Figure 1.  
As in previous algorithms, the signals are processed in subbands, each of which contains a 
band-pass filter that collectively span the frequency range in which speech (and warning 
sounds) occur.  The frequency range chosen is from 200 Hz to 6 kHz, as before. 

 
 
 



 
Figure 1: Concept block diagram for computing an Ideal Binary Mask (IBM) for speech in noise.  The speech in noise, 
which is inputted to the signal path, is also available at separate inputs as speech, and noise.  The speech and noise 

are inputted separately to the control path for computation of the IBM in each subband.  
 

 
There are now, however, three inputs to the algorithm: speech alone, noise alone, and the 

same speech mixed with the same noise.  As in our other algorithms for improving speech 
intelligibility, the speech in environmental noise forms the input to the signal path, while the 
speech and environmental noise now form separate inputs to the control path.  The aim of any 
binary mask is to determine whether the signal path at a particular time contains mostly speech 
or mostly noise.  This is done in an IBM by forming the SNR, which is possible in this case as 
both the speech and noise signals are known separately. 

By introducing a threshold value for the SNR, it is possible to segregate the speech in noise 
in the signal path into times when speech (or warning) sounds dominate (i.e., the SNR is greater 
than the threshold value), and times when noise dominates (i.e., the SNR is less than the 
threshold value).  The mask is then implemented by multiplying the signal path by unity when 
the SNR is greater than the threshold and zero when the SNR is less than the threshold.  In this 
way, time segments of speech in noise are either passed unchanged through a subband to be 
summed with the outputs of other subbands (shown by the "Σ" in Figure 1), or eliminated.  
Hence a processed signal is produced forming the output of the algorithm that may be recorded 
and evaluated by listeners.  Clearly, the binary nature of the process introduces frequency gaps 
in the sounds, so that in situations in which noise dominates in most subbands and most SNRs 
are less than the threshold, little sound would reach the output of an IBM. 

An immediate question surrounds the consequences of introducing "holes" in the frequency 
spectrum of speech on its intelligibility.  In unrelated studies it has been demonstrated that 
considerable loss of frequency content in separate frequency bands produces little reduction in 
speech understanding (Warren et al., 1995), the brain apparently being capable of "filling in" the 
spectral gaps.  In other words, there is considerable redundancy in speech sounds, a 
redundancy that we are attempting to exploit by using an IBM or BM.  This observation, 
however, also implies that not all changes in the physical characteristics of speech in noise will 
necessarily result in changes in speech intelligibility. 

With this concern resolved, it is next necessary to select the number of subbands.  Previous 
published work has commonly used a large number of narrow subbands (e.g., 64) (Arehart et 
al., 2015), which has the consequence of potentially introducing only small "holes" in the 
frequency spectrum if isolated subbands are masked (i.e., gain is zero).  While this approach  

 
 

 



 
Figure 2: Concept block diagram for computing a Binary Mask (BM) for speech in noise.  The speech in noise is 

inputted to the signal path.  The envelope of this signal is used in the control path to compute the  
Binary Mask in each of N subbands (N = 24). 

 
 

has logical appeal, it would be impractical for our study, which is focused on developing a 
method that could be applied today to an eHPD.  Moreover, as already mentioned, there is not a 
one-to-one correlation between physical changes to speech signals and changes to intelligibility. 

A basis for the number of subbands to employ may be better informed by the psychology of 
hearing.  It is well known that the ear responds differently to combinations of sounds and noise 
depending on their frequencies and bandwidths, and the process of masking sounds by noise 
(in which the noise prevents the sound from being heard) depends on the so-called critical 
bandwidth (Moore, 2013).  It is found generally that noise with bandwidth equal to, or less than, 
a critical band can only mask sounds at frequencies within this frequency band.  Hence, 
choosing subbands with bandwidth in excess of the critical bandwidth will result in the noise in a 
subband being able to mask sounds in more than one critical band, thereby rendering an IBM 
inefficient (viz.: if the IBM sets a subband gain of zero, will there be unnecessary excess loss of 
speech information?).  A solution to the problem of selecting the minimum number of subbands 
consistent with an efficient IBM is therefore to set the subband bandwidth to the critical 
bandwidth.  Published values for critical bandwidths at different frequencies lead us to employ 
24 subbands for sounds in the frequency range from 200 Hz to 6 kHz (Moore, 2013).  
Accordingly, a 24-subband algorithm has been created to implement an IBM.  Note that 
previous algorithms contained 16 subbands. 

Now it is evident that a BM, rather than an IBM, will have to be developed for situations in 
which speech and noise are premixed and not available separately, such as for our application 
to face-to-face communication between workers in mines.  This is not without challenge as to 
the best of our knowledge no successful method for constructing a BM has been reported in the 
literature.  The approach we propose to develop is based on our observation, previously 
reported, that the frequency spectra of the envelopes of waveforms for speech, tonal warning 
sounds and environmental noises are distinctly different, and hence provides a means to 
identify the presence of each of these sounds.  The algorithm is shown in concept in Figure 2.  It 
contains almost all the elements of a DM algorithm except in the control path, where the 
"implement modulation" operation is replaced by "implement binary mask". 

The process of modifying the speech (or warning sound) plus environmental noise in a 
subband is shown by the "X" in Figure 2.  It involves multiplying the contents of the signal path 
by the output of the binary mask in the control path, which, as for the IBM, is either, zero or 
unity.  Finally, the modified signals from each subband are combined (shown by the Σ in Figure 
2) and the process is repeated.  In this way, as in our other algorithms, a processed output 
signal is produced that may be recorded and subsequently replayed for evaluation by listeners. 



There is a considerable number of variations in signal processing that could be applied to 
the envelope to mimic the SNR used in an IBM, and hence be used as the basis for 
implementing a BM.  In addition, there is no prior knowledge on how to define and apply a 
threshold to the metric replacing the SNR, to switch the BM from zero (value of the metric below 
threshold) to unity (value of the metric above threshold). 

The magnitude of the threshold for both IBM and BM algorithms becomes of critical 
importance when speech is "buried" in noise.  If the threshold is set too high, too many 
subbands will be assigned a gain of zero and the intelligibility could be reduced.  Conversely, if 
the threshold is set too low, too many subbands will be assigned a gain of unity and the output 
is likely to contain excessive noise.  The latter condition may also reduce intelligibility.  Of these 
two potential outcomes, it has been suggested that there is less influence on the speech 
intelligibility of an IBM, and hence we infer on a BM, if the metric tends to be too high rather than 
too low (Li & Loizou, 2008). 

Examples of the waveforms of speech, and speech in noise, in our first implementation of an 
IBM and BM are shown in Figure 3 (see next page).  Time histories are shown for signals at the 
output of the algorithms in the upper part of the diagram and for a selected subband below.  
They extend for 30 seconds and contain seven utterances of the form "Circle the  . . [insert test 
word] . . . again".  The test words are different in each utterance.  All waveforms in Figure 3 are 
time aligned (i.e., vertically aligned), so the times when speech occurs can be deduced. 

The seven utterances are shown in the absence of environmental noise in the top waveform 
of the upper part of the diagram (labeled "noise-free speech").  The words repeated at the 
beginning and end of an utterance can be seen to produce very similar but not always identical 
waveforms, presumably reflecting slightly different pronunciation or intonation by the speaker. 

The overall speech SNR has been chosen so that the speech is completely "buried" in 
noise, as can be seen by the second waveform in the upper part of the diagram labeled 
"unprocessed speech in noise".  The outputs of two algorithms implementing either an IBM or a 
BM are shown directly below the unprocessed speech in noise.  It is immediately evident from 
the time periods when there is no speech that the environmental noise is not completely 
attenuated by the binary masks.  This is because initial listening to the outputs of the algorithms 
revealed unwanted sounds - clicks, musical noise and other distortions - that rendered the 
quality of the processed sounds unacceptable.  For this reason, the "off" value of the masks was 
set to 0.5 rather than zero, and in this way the residual environmental noise is used to mask the 
sounds affecting speech quality.  Close inspection of the outputs of the two algorithms reveals 
that some features of the original speech have been recovered from the unprocessed speech in 
noise, with more features recovered by the IBM than the BM, as would be expected.  The ability 
of a binary mask to recover the original speech depends on the overall speech SNR, which is 
low in Figure 3 (i.e., see the unprocessed speech in noise in the upper part of the Figure).  More 
features are recoverable when the SNR is greater than that shown in Figure 3, and less when 
the SNR is less than that shown in the diagram (i.e., more noise, less speech).  It should be 
noted that individual subbands may possess SNRs greater or less than the overall speech SNR, 
depending on the frequency spectrum of the noise. 

Details of the subband signal processing by the binary masks are shown in the lower part of 
Figure 3.  The time histories are examples for a subband in which speech sounds are more 
intense than the environmental noise.  The metrics used to construct the binary masks are: for 
the IBM, the short-term SNR in the subband (labeled "SNR (dB)" in the lower part of Figure 3); 
and for the BM, the ratio of envelopes representing an estimate of the speech to an estimate of 
the combined speech in noise (labeled "magnitude ratio" in Figure 3).  The calculation of the 
magnitude ratio had to be limited to components at low frequencies to achieve a stable metric.  

For the IBM, inspection of the waveform for the SNR of this subband reveals that the mask 
metric produces peaks at all times speech is present in the unprocessed speech in noise (i.e., 
compare "IBM" with "noise-free speech").  The threshold for activating the ideal mask was set to 
-5 dB and is shown by a horizontal line in Figure 3.  It can be seen to be exceeded, thereby 
setting the output of the mask to unity, twice during the first, second, fifth and seventh 
utterances, and once during the third, fourth and sixth utterances.  The subband output for the 
IBM, shown by the waveform below the metric (labeled  "subband output after applying IBM"), 
contains signals with magnitudes greater than the noise that coincide both with the timing of the 
mask being unity and the occurrence of utterances, and so can be expected to contain speech. 

 



 
 

Figure 3: Time-aligned time histories of speech and speech in noise, both unprocessed and processed 
 by either an ideal binary mask (IBM) or a binary mask (BM).  Upper - Speech, unprocessed speech in noise, and 

output of algorithms; Lower - BM and IBM metrics, and outputs for one subband. 
 

 
Turning to the BM, it is evident from the waveform that this mask metric also produces 

peaks coincident in time with the utterances (see "binary mask" in the lower part of Figure 3).  
The threshold for activating the BM is again shown by a horizontal line (at a magnitude ratio of 
about 1.3).  The threshold is selected by trial and error so that sounds dominated by speech 
exceed the value while sounds dominated by noise do not.  In the case shown, where sounds 
dominated by speech clearly exceed the thresholds of the two masks, not all speech identified 
by the IBM is identified by the BM.  Thus, when comparing the subband output after processing 
by the IBM or BM, it can be seen that while the large magnitudes are outputted by both masks, 
some of the smaller features of the audio signal are not detected by the BM (e.g., see the 
second, sixth and seventh utterances of the "subband output after applying binary mask").  It 
would therefore appear that the performance of this BM will be inferior to that of the IBM, though 
the influence on speech understanding cannot be predicted from these data. 
 
 



 
 

Figure 4: Typical one-third octave band frequency spectra of roof bolter and continuous miner (CM) noise at the 
operator's ear or near the machine.  The spectrum of speech-spectrum shaped noise 

and an industrial-like noise are shown for comparison. 
 

 
4.0  Technology Evaluation 
 
4.1 Selection and Simulation of Noises for Listening Tests 

Two candidate mining machines have been selected for use in the study.  Typical one-third 
octave-band frequency spectra of the sound pressures experienced by operators or persons 
nearby the conveyor of a continuous miner and a roof bolter are shown in Figure 4 (Camargo et 
al., 2016; Szary et al., 2011).  In a survey of twelve underground coal mines, the standard 
deviations of the sound levels produced by 33 continuous miners when cutting and loading, and 
37 roof bolters when drilling, were ±2.6 and ±3.2 dBA, respectively (Bobick and Giardino, 
c1976).  Accordingly, the noise spectra in Figure 4 are considered representative of the 
machine type, and have served as the basis for recordings of sounds for use in listening tests. 

Also shown in the figure are one-third octave band frequency spectra for speech-spectrum 
shaped noise (ECMA TR/105, 2012), and a generalized industrial-like noise.  The former is 
provided for comparison with the spectra of the noises.  A time history for the latter was 
available from another study, and was used in the development and evaluation of algorithms. 

The process for simulating time histories of the mine machine noises for presentation to 
listeners from their frequency spectra starts with a recording of random noise.  There are many 
candidate sources of random noise available on the internet, but only one has been found that 
meets our requirements for frequency content and purity. 

 
 

Table 1: Deviations from True Pink Noise 

 Center 

Frequency 

(Hz) 

Deviation 

from pink 

noise 

(dB)  

 
Center 

Frequency 

(Hz) 

Deviation 

from pink 

noise  

(dB) 
160 +1  1000 0 

200 0  1250 +1 

250 0  1600 +1 

315 0  2000 +1 

400 0  2500 +2 

500 0  3150 +2 

630 0  4000 +3 

800 0  5000 +3 

 



 
 

Figure 5: Block diagram showing process for generating simulated mining machine 
noises from one-third octave band frequency spectra (for details see text). 

 
 
With the digitized random noise recording selected, attention turned to the construction of a 

set of sixteen, parallel, one-third octave, band-pass filters, in order to create waveforms with the 
frequency spectra shown in Figure 4.  The filters were constructed in MATLAB as finite impulse 
response (FIR) digital filters using the concept block diagram shown in Figure 5.  The center 
frequencies are those specified by the American National Standards Institute (ANSI S1.1-2004).  
As the sampling frequency in all our digital signal processing is 12 kHz, the highest frequency 
that can be reproduced is 6 kHz.  The center frequency of the highest-frequency, one-third 
octave band that can hence be employed is 5 kHz, which has an upper frequency limit of 5.6 
kHz.  The lowest frequency band constructed has an upper frequency limit of 178 Hz, which is 
less than the lowest frequency of the speech sounds used in this study (200 Hz).  Thus, our 
simulations of time histories of mining noises have a usable bandwidth from below the minimum 
frequency of the signal processing to 5.6 kHz. 

The responses of the one-third octave band filters to the pink noise source are shown in 
Table 1 (see previous page).  The Table indicates the deviations from true pink noise introduced 
by the source and filters combined (i.e., deviations from pink noise would be zero in all bands 
for ideal pink noise and ideal one-third octave band filters).  Reference to Table 1 shows that 
there is a small deviation from a "flat" response in the one-third octave band with center 
frequency at 160 Hz, and increasing deviations in one-third octave bands with center 
frequencies of 1.25 kHz and above.  Perhaps up to 2 dB of the deviation at frequencies of ~3 
kHz, and above, can be attributed to imperfections in the sound source.  The remaining 
deviations would appear to originate within the filters.  Irrespective of origin, the deviations from 
flat response in Table 1 serve as the correction factors to apply when producing recordings to 
simulate the noise of mine machines. 

The time histories for the different mine machines can now be obtained by multiplying the 
output of each one-third octave band filter by the corresponding one-third octave-band value for 
a machine.  The latter are computed from the data in Figure 4 with, additionally, corrections for 
the deviations from unity of the source and one-third octave band filter set listed in Table 1.  
This is done by introducing filter-specific gains G1 - G16, as shown in Figure 5.  The resulting 
one-third octave-band spectra to be applied to our pink noise to obtain recordings simulating the 
time histories of the noise of the machines are given in Table 2.  For implementation, the 
relative gain values are expressed as voltages in dB re a convenient reference, here chosen to 
be 1 microvolt rms.  The adjusted band levels are finally summed to give the full bandwidth 
simulation of the noise of a given machine (shown by the "Σ" in Figure 5). 

 



Table 2: One-Third Octave-Band Frequency Spectra for Simulating the Noise of Selected Mining Machines 

Center 

Frequency 

(Hz) 

 

Continuous Miner 

(Conveyer Starts) 

(dB re 10
-6
 V rms) 

 

 

Roofbolter 

(dB re 10
-6
 V rms) 

160 79 72.1 

200 81 73.2 

250 82 73.2 

315 82.5 74.7 

400 83.5 77.5 

500 83.5 82.1 

630 83.5 85.1 

800 85 88 

1000 85 87.7 

1250 84.5 86.5 

1600 84 84.9 

2000 83 82.9 

2500 80.5 79.9 

3150 80 78.8 

4000 75 77 

5000 72 75.5 

 
 

4.2 Simulation of Sounds Experienced by Miner Wearing a Hearing Protector 
A simulation of the sounds that would be experienced by a miner wearing an HPD has been 

developed.  A physical representation of the simulation is shown in Figure 6.  Here a worker is 
wearing a commercial, passive, circumaural HPD that consists essentially of two cups (one per 
ear) held in place by a spring, with soft cushions sealing the air space between the ear cup and 
the head.  There is also a microphone mounted on the outside of each ear cup.  The purpose of 
the microphone is to sense sounds in the environment around the worker. 

Our simulation of the device in the photograph is purely computational: physically, there is 
no HPD nor microphone.  The photograph, however, serves to illustrate that sounds can reach 
the ear essentially by two paths: 1) by passing through the HPD, or 2) by replaying the output of 
the microphone through a miniature loudspeaker under the ear cup after signal processing. 

 

 
 

Figure 6: Photograph of worker wearing a passive, circumaural HPD. 
A miniature microphone has been attached to the outside of the ear cup. 

 
 



 
Figure 7: Block diagram showing process for simulating a passive HPD (for details, see text). 

 
 
The sounds experienced by a miner wearing an HPD are simulated by the process shown in 

Figure 7.  Our model for a conventional, passive HPD consists of a set of sixteen, one-third 
octave, band-pass filters each followed by an amplifier. 

In order to simulate the sounds heard by someone standing close to an operating mine 
machine while listening to someone else talking, the input to the "hearing protector" consists of 
speech to which is added the noise of the mine machine (shown to the left of the diagram).  The 
time histories of the noises are obtained for selected machines by the process described in 
subsection 4.1.  The speech consists of sentences from a speech-in-noise test (House et al., 
1965), which is described in the following subsection.  An amplifier, labeled G0, enables the 
magnitude of the noise to be changed to set a desired speech SNR, which models how far the 
talker is from the listener (i.e., the greater the distance the less speech intensity relative to the 
environmental noise, hence lower SNR). 

The attenuation of the HPD to apply to the speech buried in noise is obtained by multiplying 
the output of each one-third octave-band filter by the corresponding one-third octave-band 
attenuation of the HPD.  The latter are computed from the data in Table 3 (see next page), 
which were measured previously in our laboratory when subjects wore a high-performance, 
commercial, passive circumaural HPD.  This is done by introducing filter-specific gains G1 - G16 
as shown in Figure 7.  For implementation, the values are expressed in Table 3 as the 
attenuation in dB.  

The adjusted one-third octave-band levels are finally summed to give the full bandwidth 
simulation of the sounds at the ear under the ear cup of the HPD (shown by the "Σ" in Figure 7).  
These are the sounds heard by the miner in the simulation when wearing a commercial 
circumaural HPD that provides excellent attenuation, such as the model shown in Figure 6.  The 
recordings simulating sounds at the ear under the passive HPD serve as the reference against 
which the performance of our algorithms is to be assessed in the noise of mine machines. 

The sounds to be used as input to our algorithms consist of the speech and noise in the 
environment at the location of the listener (i.e., close to a mine machine), and would be obtained 
in the real world from the microphone outside the ear cup.  In our simulation, these are before 
the filter set and are easily recovered after the mine machine noise and speech have been 
combined (see Figure 7).  To simulate a remote talker, speech and noise are inputted 
separately to the algorithm (see also Figure 1). 

 
 



Table 3: One-third Octave Band Attenuation of a Commercial, Circumaural HPD 
 Center 

Frequency 

(Hz) 

Attenuation of HPD 

 (dB) 

  
 

Center 

Frequency (Hz) 

Attenuation of HPD 

(dB) 

 

160 13.5  1000 32.5 

200 17  1250 35.5 

250 21.5  1600 36 

315 24  2000 35.5 

400 27.5  2500 36.5 

500 30  3150 35 

630 31  4000 40.5 

800 32  5000 43 

 
 

4.3 Subjects for Listening Tests 
Healthy volunteers were invited to participate in the study after undergoing an induction 

procedure.  Criteria for inclusion in the study were: 1) age between 18 and 50 years; 2) absence 
of factors that could influence the performance or acceptability (e.g., comfort) of insert 
earphones, or circumaural headphones; 3) no infections of the skin or external ear; 4) no 
impacted cerumen; 5) no middle ear infections; 6) tolerance to plastics on the skin; 7) hearing  
function questionnaire score less than 10 (see Appendix Hearing Function Questionnaire); 8) 
when measured, pure-tone air-conduction Hearing Threshold Levels (HLs) re ANSI S3.6-1996 
of less than (i.e., more sensitive than) 20 dB HL at frequencies of 0.25, 0.5, 1, 2, 4, 6 and 8 kHz, 
with thresholds of individual ears that differ by less than 10 dB (Schlauch and Nelson, 2009); 9) 
absence of persistent tinnitus, and; 10) ability to identify similar sounding words spoken out of 
context in American English, read the words, and signal the words selected by completing a 
written form.  Volunteers successfully completing the induction procedure were accepted as 
subjects for as many listening tests as they chose and were paid for their time. 

Audiometric evaluation of hearing thresholds was conducted on volunteers who attended 
our audiology clinic, as well as an examination of their external ears.  For other subjects, 
information concerning their hearing ability was obtained from answers to the Hearing Function 
Questionnaire. 

Subjects who came to our clinic and/or laboratory at the University of Connecticut Health 
Center were seated comfortably in an audiometric room, which fulfilled the ambient noise 
requirements for audiometric threshold determinations in ANSI S3.1, 1999.  The listening tests 
were conducted with the subject wearing commercial insert earphones (E·A·RTone type 3A or 
5A) using .wav files constructed off-line by MATLAB.  Subjects who listened remotely to the 
.wav files used their choice of headphones or earphones.  The influence of listening conditions 
on the performance of listening tests is discussed in the following subsection. 

The study protocol was approved by the Institutional Review Board of the University of 
Connecticut Health Center, Farmington, CT.   

 
4.4 Listening Tests - On Campus, and Using the Internet 

As in our previous work for the Alpha Foundation, the Modified Rhyme Test (MRT) was used 
to characterize the intelligibility of individual words in a six-alternative forced choice paradigm 
(ANSI, 2009; House et al., 1965).  This test of consonant confusion has been used extensively 
for its relevance to critical communications in which a single word error could have serious 
consequences (e.g., air traffic control, military and first responder operations) (Cardosi, 1998; 
Anderson et al., 1997; LaTourette et al., 2003), and so is most suitable in our opinion for 
simulating situations that may occur in mining environments.  It was also used in the only 
evaluation of eHPDs for miners (Azman and Hudak, 2011). 

The word lists were those standardized for American English as spoken by a male talker 
(Auditec, St Louis).  A trial consisted of one of six words being randomly replayed within a 
carrier sentence, e.g., "Circle the - [insert test word] - again".  Subjects were instructed to  

 
 



 
Figure 8: Example of a completed 25-trial Modified Rhyme test. 

 
 
identify the test word on a prepared word list.  There were 25 trials in each test from which a 
word score (i.e., number of words correctly identified) was derived for a preset speech SNR.  An 
example of a completed test is shown in Figure 8. 

A successful demonstration of proof-of-concept would be obtained by an increase in word 
score when an algorithm is employed compared to a reference condition when it is not 
employed, thus demonstrating improved speech intelligibility.  The statistical test of the 
difference between the word scores for the two conditions is a two-sided paired t-test (Bland, 
2015).  

As we previously reported, on-campus listening tests require subjects to come to our clinic 
and/or laboratory at the University of Connecticut Health Center.  Unfortunately, testing was 
disrupted by the COVID-19 pandemic.  It became apparent from the response to 
advertisements that volunteers were commonly unwilling to come on campus to undergo 
listening tests, especially during the time when employees and students were encouraged to 
work from home.  For this reason, we developed a web-based listening test employing the MRT.  
The scientific challenges to web-based speech intelligibility tests involve the following issues. 

 
 
 



 
 
 

Figure 9: Computer screen for test webpage of internet-based MRT showing trials #1 - #7. 
 

 
Firstly, do listeners who may never visit our campus possess normal hearing?  We have 

attempted to address this issue by restricting the age of subjects, and by including the short 
questionnaire on hearing ability (see Appendix Hearing Function Questionnaire). 

Secondly, does the fidelity of the sound reproduction system chosen by the listener 
influence the performance of the test?  Clearly, the answer to this question is yes, but the 
important consideration is the extent to which any detrimental effects can be reduced.  
Commercial headphones, earphones and earbuds generally possess acceptable responses at 
the frequencies most important for understanding speech (i.e., from about 500 Hz to 2-3 kHz).  
Note that this statement refers to speech intelligibility but not speech quality, which will be 
influenced by the restricted frequency range.  The computer loudspeaker is not used.  
Moreover, defining the proof-of-concept demonstration as the difference between two tests 
performed during the same session, that is one without our algorithm and one with, may be 
expected to reduce effects due to spectral imperfections in the sound reproduction system. 

Thirdly, will the lack of control of the sound level listeners choose for their listening test 
influence the results?  It is well known that speech intelligibility is not influenced by the loudness 
of sounds over a wide range of sound levels (Dubno et al., 2005), so provided listeners choose 
a "comfortable" listening level (i.e., not too loud or too quiet) and can hear all sounds the effect 
on word scores is unlikely to be detectable.  For this reason, our instructions to users include 
examples of the quietest and loudest sounds for them to set the volume control of their sound 
reproduction system before commencing formal listening tests. 

The screen seen by a subject on commencing an internet-based listening test is shown in 
Figure 9.   

 
 



Subjects started the test when they chose by mouse-clicking on the "play" button and may 
temporarily stop the test at any time during the 25 trials by mouse-clicking on the "pause" 
button.  Once the test started, MRT sentences were replayed once for each trial, with a ~3 s 
interval between each trial for subjects to record their choice by mouse-clicking on the word they 
believed they heard.  Subjects were asked in the instructions to respond to each trial even if 
they had to guess the word when the speech was muffled or unclear.  They also had to scroll 
down during the test to answer trials that were not initially visible on the screen (e.g., trials #8 et 
sequa for the webpage shown in Figure 9).  After completing all the tests in the measurement 
session, subjects were requested to e-mail the response file to us for analysis.  They were sent 
payment for their time on receipt of the data file. 

 
4.5  Analysis of Listening Tests 

We have during the course of the project conducted listening tests under three different 
measurement conditions: in an audiometric clinic, a research laboratory, and remotely using the 
internet. 

The first, described as clinic listening tests, were conducted under controlled conditions 
within a controlled environment in the audiometric facilities of the Division of Otolaryngology, 
Head and Neck Surgery.  The clinic is operated by experienced audiologists, who examined the 
external ears of subjects, supervised the fitting of insert earphones and controlled the sound 
level of stimuli prior to presentation.  The hearing thresholds of each subject were first 
established at different frequencies, and sounds were then presented at a fixed intensity relative 
to an individual's thresholds.  Measurements were thus conducted at the same sensation level 
for all subjects.  Subjects recorded the responses to each trial on paper (e.g., see Figure 8), 
including guesses when words were unclear or inaudible and the test proceeded at a rate 
established by agreement between the experimenter and subject. 

The second, described as laboratory listening tests, were conducted in an audiometric room, 
in our laboratory, which also provided a controlled environment.  Subjects themselves inserted 
earphones into their ears, with some oversight from graduate students.  There was no 
evaluation of hearing thresholds or use of constant sensation level.  As in the clinic, subjects 
recorded the responses to each trial on paper, including guesses when words were unclear or 
inaudible, and the test proceeded at a rate established by agreement between the experimenter 
and subject. 

The third, described as web-based listening tests, were conducted at a location of the 
subjects' choice, commonly at home, and they chose the headphones or earphones to wear.  
They listened to sounds reproduced by their own computer's audio and accessed sounds by 
mouse-clicking on symbols visible on their computer screens.  At all times subjects controlled 
when the next listening test would start and could temporarily stop the test at any time by 
mouse-clicking on a "pause" button (see Figure 9).  Once a test started, MRT sentences were 
replayed once for each of the 25 trials and subjects were asked to respond to each trial even if 
they had to guess the word when the speech was unclear or inaudible, as in the other 
measurement conditions. 

It is not evident a priori that the three measurement conditions will produce equivalent 
results.  Of the three, the most controlled conditions were those employed in the clinic, 
henceforth taken as the "gold standard" with which the results of other listening tests will be 
compared. 

Before comparing mean word scores between different measurement conditions, it is 
important to identify whether the comparative lack of control of subject performance during 
laboratory or web-based testing (e.g. poor fitting earphones or headphones, imperfect sound 
reproduction, lack of concentration, interruptions, etc.) could lead to systematic differences in 
subjects' word scores. 

The identification of systematic, as opposed to random, errors is an imperfect art.  However, 
by conducting listening tests consisting of the same sequence of audio files, each containing the 
same 25 trials, it was possible to separate random differences in word scores between subjects 
from the systematic, or erratic, performance of a subject during a series of tests.  An example of 
the method employed is shown in Table 4 (next page).  

 
  

 



 



A complete record of subjects' word scores, either in the clinic or the laboratory, listening to 
speech in continuous miner or roof bolter noise is shown in Table 4.  In this experiment there 
were seven subjects who attended the audiology clinic and six who attended the laboratory.  
Subjects listened to the same audio files either in the clinic or the laboratory.  There were 
thirteen different tests that were administered sequentially in the same order to each subject 
during a measurement session.  In Table 4 the tests are numbered from #1 - #13 with each 
involving a different mining noise or speech SNR except for test #1 which consisted of speech 
with no noise.  This test was to familiarize the subject with the measurement procedure: a 
perfect score of 25 words correct was expected for each subject.  Reference to Table 4 shows 
that all subjects attending the laboratory achieved a perfect word score.  However, two subjects 
attending the clinic only achieved a word score of 24 / 25 (subjects #2 and #7).  The difference 
in mean word scores is not statistically significant although it may reflect a transitory lack of 
concentration on the part of the two subjects with lower scores. 

If the magnitudes of the standard deviations (SDs) for tests from #2 to #13 are reviewed for 
all subjects, it can be seen that they range from 3.1 to 7.1 in the clinic but from 3.0 to 14.6 in the 
laboratory.  The greatly increased maximum SD in the laboratory might reflect the reduced 
control of the measurement, though this seems unlikely given the similarity of the minimum SDs, 
or indicate the presence of one or more subjects with consistently unusual performance whose 
word scores form outliers in some, but not necessarily all, test conditions. 

The analysis to identify a subject with unusual performance is performed in the following 
way.  We can expect that each test will have a most probable value, which will be described by 
the mean of a near Gaussian distribution (for mean scores not censored by zero or 25).  Thus, 
individual subject's scores will range randomly with respect to the mean for each test.  For some 
tests, a subject will score higher than the expected value and for others lower.  If we now sum 
the scores for a subject across all tests (i.e., sum values by row in the table), the properties of 
the mean summed scores can be employed to identify outliers.  By summing word scores 
across tests for a given subject, the random deviations from the expected values of individual 
tests will be effectively reduced in the magnitude of the summed mean score, as the summed 
deviations from expected values will tend to zero as the number of tests increases.  Residual 
differences between subjects in scores summed across all tests will then indicate differences in 
a subject's performance. 

The scores summed over all tests are given for each subject in the far right column of Table 
4.  Inspection of these data reveals that the mean summed word score is 274 for all subjects 
who attended the clinic and 265 for all subjects who attended the laboratory.  While this 
difference could reflect an overall difference in performance for subjects attending the laboratory 
versus the clinic, the origin of the difference in this case is to be found in the SDs: the SD of the 
summed scores in the clinic is 7.4, while that for the laboratory is much larger, namely 16.3.  
Close inspection of the summed scores for subjects attending the laboratory identifies one 
subject, #11, whose summed score is much less than the mean (233 versus 265).  If this 
subject is removed from the analysis, the mean summed score for the remaining subjects 
attending the laboratory increases to 271 and the SD decreases from 16.3 to 5.4 (see bottom of 
far right column of Table 4).  Clearly, eliminating subject #11 from the analysis has removed the 
discrepancy in the SDs of the mean summed scores and reduced the difference between the 
mean summed scores to about 1%.  The summed score of the outlier is hence revealed as 
being ~7 SDs from the mean summed score after it has been removed from the calculation.  
The probability of the outlier having obtained meaningful word scores is thus vanishingly small.   

The effect of removing the outlier on the results of tests #2 - 13 conducted in the laboratory 
can be seen by comparing the mean scores and SDs for each test at the bottom of the table.  
While reducing the number of subjects from six to five would usually be expected to increase 
the SD, a comparison of the SDs including and excluding the outlier reveals that in most cases 
the SD is reduced when the outlier is excluded: viz., test #2, from 9.4 to 4.4; test #7, from 7.8 to 
3.6; test #10, from 14.6 to 6.6; and test #13, from 12.2 to 4.4.  More importantly, the largest 
differences between the mean values for individual tests conducted in the clinic versus the 
laboratory are reduced when the outlier is excluded: viz., test #10, from 7.0 to 1.5; and test #13, 
from 5.8 to 1.1. 
 
 
 



 
Figure 10: Mean word scores (%) for the same MRT test conducted either in the laboratory or the clinic 

(filled circles).  Thick line is a linear regression fit to the data, and dashed lines are 95% confidence intervals. 
(for further explanation, see text) 

 
 

it would now appear appropriate to determine whether listening tests conducted in the 
laboratory are in agreement with those conducted in the clinic.  First, however, it is necessary to 
account for subjects' responses that involve chance or guessing the correct word during a trial.  
It is generally recognized that a psychophysical test forcing subjects to choose one item out of 
several alternatives presented to them, such as the MRT used here, requires subjects to guess 
the correct word in circumstances in which speech is not clear or inaudible because of the 
noise.  Consequently, it is necessary to adjust the observed word scores for guessing.  This has 
been done to the data of Table 4 using the formula provided for this purpose by ANSI S3.2-1989 
(R2009): 

 
Wcor  =  Wobs - (N - Wobs) / (n - 1)    (1) 

 
where Wobs is the word score recorded by a subject (i.e., number of words correctly identified in 
a test), Wcor is the word score corrected for guessing, N is the number of trials in a listening test 
(i.e., 25), and n is the number of alternative words from which the subject may choose (i.e., 6).  

After correcting the individual word score for guessing and excluding the outlier, the results 
of the thirteen listening tests in Table 4 are summarized in Figure 10.  In this diagram the mean 
word scores are expressed as the percentage of words correctly identified.  Those obtained in 
the clinic are plotted on the abscissa and those in the laboratory on the ordinate.  In this way the 
mean word scores obtained listening to the same audio file comprising one test of 25 trials can 
be represented in Figure 10 by a data point (shown as a filled circle).  Thus, if the mean word 
score recorded by subjects listening to an MRT in the laboratory is identical to that recorded by 
subjects listening to the same test in the clinic, then the filled circle will fall on the thin line 
bisecting the graph diagonally (from coordinates 40,40 to 110,110).  Discrepancies between 
word scores obtained in the laboratory test compared to the "gold standard" will hence appear 
as deviations from the thin diagonal line. 

Inspection of Figure 10 reveals that word scores in seven of the thirteen independent 
speech-in-noise tests cluster closely around the thin line, indicating good agreement between 
the results of laboratory and clinic tests.  The others vary in their proximity to the diagonal line 
and display the magnitude of the deviations that were obtained with the small numbers of 
subjects.  There is, however, generally no statistically significant difference between the results 
of the laboratory and clinic tests, though the results of test #12 did reach significance (p<0.05, 
two-sided t-test).  This occurred because of the uncommonly small SDs recorded in this test 
(4.7% and 2.6% in the clinic and laboratory tests, respectively). 
 



 
Figure 11: Mean word scores (%) for the same MRT test conducted either on campus (laboratory and clinic) 

or remotely using the internet (filled circles).  Thick line is linear regression fit to data, 
and dashed lines are 95% confidence intervals.  (for explanation, see text) 

 
 

A linear regression analysis, shown by the thick line in Figure 10, closely follows the desired 
relation (i.e., the thin line), demonstrating that there appears to be a functional relation between 
the results of the laboratory and clinic tests.  The 95% confidence intervals for the relation are 
shown by the dashed lines and include all data as well as the desired relation between the 
laboratory and clinic tests. 

Having demonstrated that measurements performed in the clinic and laboratory produce 
equivalent word scores in more than 90% of tests provided the data are controlled for outliers, it 
is now appropriate to determine whether listening tests conducted in the clinic and laboratory 
are in agreement with those conducted remotely using the web-based testing methodology.  
This has been done in the same way as that just described for comparing word scores obtained 
in the clinic with those in the laboratory.  For this comparison of testing methodologies, there 
were eleven subjects who underwent the MRT on campus and fourteen who participated 
remotely.  There were thirteen listening tests in all.    

The results are shown in Figure 11 where, as before, the mean word scores are expressed 
as the percentage of words correctly identified.  Those obtained on campus are plotted on the 
abscissa and those off campus on the ordinate.  In this way the mean word scores obtained 
listening to the same audio file comprising one test of 25 trials is represented in Figure 11 by a 
data point (shown as a filled circle).  Discrepancies between word scores obtained by subjects 
using the web-based test compared to those obtained in the conventional way on campus will 
hence appear as deviations from the thin diagonal line (from coordinates 50,50 to 110,110). 

Inspection of Figure 11 reveals that word scores in twelve of the thirteen independent 
speech in noise tests cluster closely around the thin line, indicating good agreement between 
the results of web-based and laboratory / clinic tests.  The excellent performance of the web-
based listening test for persons with normal hearing is confirmed by a linear regression analysis, 
shown by the thick line in Figure 11.  This closely follows the desired relation (i.e., the thin line), 
demonstrating there is a functional relation between the results of web-based and laboratory / 
clinic tests.  The 95% confidence intervals for the word scores are shown by the dashed lines, 
and include all data as well as the desired relation between web-based and laboratory / clinic 
tests.   The maximum deviation in this validation of the performance of the web-based listening 
test occurred in one test that reached the 95% confidence interval.  However, there was no 
statistically significant difference between the results of web-based and laboratory / clinic tests 
(two-sided t-test). 

  
 

 



 
Figure 12: Mean word scores (% correct) shown as a function of the speech SNR.  Word scores in the absence of 
signal processing are illustrated by the filled circles and thin line.  Target range for word scores after processing 

designed to improve speech intelligibility is suggested by thick lines and vertical shading. 
 

 
In summary, it appears that the web-based test is an adequate alternative to performing 

tests in the laboratory or clinic.  The present work confirms the validity of pooling the results of 
listening tests conducted on and off campus for persons with normal hearing.  With many 
persons hesitant to come on campus during the COVID-19 pandemic, web-based testing 
provided a modality for the continuation of listening tests and has been essential for us to 
address our mission statement.  Nevertheless, the necessity to evaluate substantive changes to 
algorithms by listening tests together with delays, often of many days, before subjects chose to 
perform a web-based test have inevitably restricted our ability to make progress.  It should be 
noted that listening tests for each experiment took about a month to complete.   

 
4.6 Evaluation of Algorithms for Improving Speech Intelligibility 

The primary task of this study was to complete the proof-of-concept by refining algorithms 
and demonstrating their performance under the conditions requested by the Alpha Foundation.  
These are described in the mission statement (subsection 2.1).  The proof-of-concept evaluation 
of algorithms consisted of listening tests conducted using .wav files constructed off-line by 
MATLAB.  These were conducted when the subject wore commercial high-fidelity insert 
earphones on campus, and headphones or earphones of their own choice off campus.  In 
consequence, the components employed for the proof-of-concept evaluation were ad hoc and 
will not form part of a future working prototype. 

Listening tests have been performed when subjects listened to speech in an industrial-like 
noise without hearing protection, to enable comparison with the results of another study, and in 
mine machine noise when "wearing" the simulation of a passive HPD shown in Figure 6.  
 
4.6.1 Presentation of Results 

The results of listening tests are presented as the mean percentage of words correctly 
identified by subjects in an experiment (%c).  They have been obtained for different speech 
SNRs and different noises to address the mission statement.  The presence of systematic errors 
in word scores has been tested by the method described in subsection 4.5 and data from 
subjects failing the test have been excluded.  In all experiments word scores were obtained 
when an algorithm was employed compared to a reference condition when it was not employed.  
The statistical test of the difference between the word scores for the two conditions was a two-
sided paired t-test, from which an improvement in intelligibility is obtained when p < 0.05. 

An example showing the expected form of the results is shown in Figure 12. 
 
 



Figure 13: Mean word scores (% correct) at various speech SNRs in the industrial-like noise showing effect of 
increasing number of subbands.  Scores in the absence of signal processing are shown by filled circles and thin line.  
Word scores after processing using 16 subbands are shown by open squares, and 24 subbands by filled squares. 

 
 

The word score in the absence of signal processing is illustrated by the filled circles and thin 
line in Figure 12, and can be seen to follow an 'S'-shaped curve as the SNR increases.  The 
word score is small for large negative values of SNR at which few, if any, words would be 
understood, improving to almost every word being understood at SNRs of ~10 dB.  The target 
performance of the signal processing performed by our algorithms is suggested by the thick 
lines and vertical shading in the diagram.  It can be seen that the word scores after processing 
will differ little from those obtained in the absence of signal processing when the latter are 
greater than about 80%.  More importantly, the algorithms should not decrease the word scores 
under these conditions.  Positive contributions to word scores are expected from the signal 
processing as the SNR decreases (i.e. becomes more negative) until the unprocessed word 
score is approximately 35%.  Under these conditions, an algorithm will need to increase the 
word score by in excess of 50% to return the word score to more than 80%.  Such large 
increases in word score would appear beyond the reach of algorithms containing up to 24 
subbands without access to remote computational resources (e.g., neural network processing, 
as in Kim et al., 2009).  Hence the word scores within the shaded area of the Figure were 
chosen here as the targets for implementation in a wearable stand-alone eHPD.  From a user's 
perspective, algorithms that produce word scores within the shaded area will provide substantial 
improvements understanding speech under all conditions of interference by noise. 

     
4.6.2 Comparison of Word Scores for Algorithms Containing 16 and 24 Subbands 

It has been argued in subsection 3.2 that algorithms for improving speech intelligibility will 
be sensitive to the bandwidth of the subbands because of the nature of masking by noise.  This 
may be most readily examined here by constructing an IBM algorithm containing twenty-four 
subbands in order to compare with the results of a previous study employing sixteen subbands. 

Listening tests were undertaken by fifteen subjects who possessed normal hearing in the 
industrial-like noise to permit comparison with the previous study (mean age 29.6 years, range 
21 - 44 years).  The results are shown in Figure 13.  In this diagram mean word scores (% 
correct) at various speech SNRs in the industrial-like noise are shown for algorithms containing 
either sixteen or twenty-four subbands.  Mean scores in the absence of signal processing are 
shown by filled circles and the thin continuous line.  Mean word scores after processing using 
sixteen subbands are shown by open squares, and twenty-four subbands by filled squares. 

It is evident by comparing the open and filled squares in Figure 13 that the twenty-four 
subband algorithm outperformed the sixteen subband version of the algorithm at low SNRs (i.e., 
more negative) where substantial improvement in speech intelligibility is desired.  At -8 dB SNR, 

 



Figure 14: Mean word scores (% correct) at various speech SNRs in continuous miner noise.  Scores when wearing a 
passive HPD are shown by filled circles.  Word scores after processing using a 24-subband DM algorithm are shown 
by filled squares.  The thin continuous line shows the word score without signal processing in the industrial-like noise. 

 
 

for example, the mean increase in word score for the twenty-four subband algorithm was 30.7% 
while that for the sixteen subband version was 18.1%.  Accordingly, all results presented in the 
remainder of this section were obtained using twenty-four subband algorithms. 

 
4.6.3 Performance of 24-Subband Direct Modulation Algorithm in Mine Machine Noises 

Listening tests were undertaken in the simulated noise of a continuous miner or roof bolter 
by thirty subjects who possessed normal hearing (mean age 26.6 years, range 21 - 42 years).  
The results are shown in Figures 14 and 15, respectively.  In this diagram mean word scores (% 
correct) at various speech SNRs in mine machine noises are shown as experienced by a miner 
wearing a passive HPD (filled circles) and when listening to our direct modulation (DM) 
algorithm (filled squares).  The thin continuous line shows the word scores obtained in the 
industrial-like noise without signal processing. 

Figure 15: Mean word scores (% correct) at various speech SNRs in roof bolter noise.  Scores when wearing a 
passive HPD are shown by filled circles.  Word scores after processing using a 24-subband DM algorithm are shown 
by filled squares.  The thin continuous line shows the word score without signal processing in the industrial-like noise. 

 
 
 



Figure 16: Mean word scores (% correct) at various speech SNRs in the industrial-like noise.  Scores in the absence 
of signal processing are shown by the filled circles and thin line.  Word scores after processing using 24 subband 

algorithms are shown by filled diamonds for a BM, and filled squares for an IBM. 
 

 
Subjects unexpectedly performed better when wearing the HPD in mine machine noise than 

previously when listening to the unprocessed industrial-like noise, which led to larger word 
scores for the comparison test condition.  Reference to Figure 12 reveals that only small 
improvements in word score can be expected with signal processing when the unprocessed 
word score is >80% (e.g., at an SNR of -4 dB), which is as observed in Figures 14 and 15.  
Somewhat larger increases in word scores were obtained at lower SNRs with the maximum 
improvement obtained by the DM algorithm reaching 12.2%.  All increases in word scores 
obtained by employing the algorithm were statistically significant except for the test at an SNR 
of -4 dB in continuous miner noise when p = 0.09.   
 
4.6.4 Performance of 24-Subband Binary Masking Algorithms in the Industrial-like Noise 

These listening tests were a continuation of those described in subsection 4.6.2, and 
involved the same subjects.  The purpose of the experiment was to compare the performance of 
our first ideal binary mask (IBM) with that of our first binary mask (BM).   

Mean word scores for subjects listening to speech in the industrial-like noise either 
unprocessed or processed by our BM or IBM are shown in Figure 16.  As before, mean word 
scores in the absence of signal processing are shown by filled circles and the thin continuous 
line.  Mean scores after processing using the IBM are shown by filled squares, while mean word 
scores obtained after processing using the BM are shown by filled diamonds.  At all SNRs the 
increases in word scores obtained by signal processing using either the IBM or BM are 
statistically significant (p < 0.05). 

As previously noted, the IBM produced large increases in mean word scores when the 
unprocessed score was <50% (i.e., 30.7% at an SNR of -8 dB, and 27.2% at -6 dB).  The 
increases in scores at SNRs of -4 and -2 dB were also substantial, 14.4% and 10.6% 
respectively, and can be seen to meet the targets suggested for our algorithms in Figure 12.  
Thus our IBM algorithm is judged to provide substantial improvements in speech intelligibility in 
the industrial-like noise and so is immediately applicable to situations in which speech and noise 
are available separately. 

The BM algorithm produces consistent increases in mean word scores at all SNRs ranging 
from 4.8% to 7%.  While, as expected, the increases are smaller than those produced by the 
IBM, they nevertheless confirm the potential for improving speech intelligibility by our signal 
processing during face-to-face communication.  Indeed, the increases in word scores can be 
seen to come close to meeting the targets suggested for our algorithms in Figure 12 at word 
scores greater than ~60%.       
 
 

 



 

Figure 17: Mean word scores (% correct) at various speech SNRs in continuous miner noise.  Scores when wearing a 
passive HPD are shown by filled circles and thin line.  Word scores after processing using 24-subband algorithms are 

shown by filled diamonds for a BM, and filled squares for an IBM. 
 
 

4.6.5 Performance of 24-Subband Binary Masking Algorithms in Mine Machine Noises 
Listening tests were undertaken in the simulated noise of a continuous miner or roof bolter 

by fourteen subjects who possessed normal hearing (for continuous miner noise, mean age 
26.5 years, range 21 - 44 years; and for rock bolter noise, mean age 28.3 years, range 20 - 44 
years).  The results are shown in Figures 17 and 18, respectively.  In these diagrams mean 
word scores at various speech SNRs in the mine machine noises are shown as experienced by 
a miner wearing a passive HPD (filled circles) and when listening to our BM algorithm (filled 
diamonds) or IBM algorithm (filled squares).  Results are shown for a wide range of SNRs (from 
-12 to +3 dB) and word scores before signal processing of from 33% to 86.7%. 
 

 
Figure 18: Mean word scores (% correct) at various speech SNRs in rock bolter noise.  Scores when wearing a 

passive HPD are shown by filled circles and thin line.  Word scores after processing using 24-subband algorithms are 
shown by filled diamonds for a BM, and filled squares for an IBM. 

 
 



Compared to when wearing the passive HPD, the large increases in mean word score 
obtained by the IBM algorithm at low SNRs in industrial-like noise were again evident in 
continuous miner noise: in this case the increase was 36.7% at an SNR of -12 dB, and 23.7% at 
an SNR of -9 dB (see squares in Figure 17).  Substantial, though not as large, increases in 
mean word scores were also obtained by this algorithm in rock bolter noise at low SNRs: in this 
case 18.7% at an SNR of -12 dB, and 19.7% at an SNR of -9 dB (see squares in Figure 18).  All 
these increases in word scores were statistically significant (p < 0.05).  The increase in mean 
word score in rock bolter noise was also statistically significant when the SNR was -6 dB and 
the word score when wearing the HPD was 78%.  However, this was not the case for other 
SNRs at which there was a comparable word score when wearing an HPD and there was no 
signal processing (i.e., SNRs of -3 for both noises, and -6 dB for the continuous miner noise).  
As with speech intelligibility in the industrial-like noise, there is less need for the algorithm to 
increase word scores at these SNRs as they are already high without signal processing (viz., 86 
- 87% at an SNR of - 3 dB, and 78% at -6 dB).  The performance of the IBM algorithm was also 
evaluated in the absence of noise to establish whether the signal processing, including 
switching on and off of the mask, created sufficient distortion or artificial sounds to influence the 
word score.  A mean word score of 94% was obtained under this condition, which was not 
statistically different from that obtained in the absence of signal processing (99.7%). 

Overall, the performance of the IBM is considered to meet the targets suggested in Figure 
12 for our algorithms when operating in continuous miner and rock bolter noise.  Hence, as 
already noted when processing the industrial-like noise, this algorithm is judged to provide 
sufficient improvement in speech intelligibility to be immediately applicable to situations in which 
speech and noise are available separately. 

The BM algorithm produced similar increases in mean word scores in listening tests using 
the industrial-like noise when the unprocessed scores ranged from ~40% to ~75% (i.e., 
increases of from 5% to 7%, see Figure 16).  Reference to Figures 17 and 18 reveals that this 
pattern is less evident when comparing word scores obtained using the algorithm with those 
obtained wearing a simulated passive HPD and no signal processing.  As with the performance 
of the BM in industrial-like noise, the changes in word scores are much less than those obtained 
when the IBM algorithm processed mine machine noises.  For the BM algorithm the increases in 
mean word scores in continuous miner noise of 12.3% and 6.7% at SNRs of -9 and -12 dB, 
respectively, were statistically significant (see diamonds in Figure 17), while none were 
statistically significant when listening in rock bolter noise (see diamonds in Figure 18).  The 
performance of the algorithm was also evaluated in the absence of noise for the reasons stated 
above.  In this case mean word scores of 92 and 96% were obtained in two experiments.  The 
former was statistically significantly different from that obtained when wearing the passive HPD 
in the absence of signal processing (99.7%), indicating a small reduction in word score was 
associated with production of the mask.  There was no statistically significant difference in word 
score from that obtained in the second experiment when wearing the passive HPD in the 
absence of signal processing (99.3%).  

The generally modest improvements in word scores produced by the BM algorithm and lack 
of statistically significant improvements in rock bolter noise, together with a possible reduction in 
word score in the absence of noise, are thought to be related to the formulation of the 
magnitude ratio.  An attempt is being made to develop an improved mask after the completion 
of this study (see Appendix). 

 
4.6.6 Performance of 24-Subband Binary Masking Algorithms in Intermittent Noise   

In response to the mission statement the performance of the IBM and BM algorithms was 
also evaluated in intermittent noise.  The noise was created in the following way in order to 
enable quantitative evaluation by listening tests employing the MRT.  A 25-trial audio file was 
constructed consisting of: 

Trials #1 - #10:  Speech in noise at SNR = -8dB 
Trials #11 - #15:  Speech in noise at SNR = -2dB 
Trials #16 - #20:  Speech in noise at SNR = -8dB 
Trials #21 - #25:  Speech in noise at SNR = -2dB 

Hence, in this test there were 15 trials in which noise dominated (trials #1 - #10, and #16 - 
#20) and 10 trials in which there was much less noise, perhaps modeling the background noise 
in a mine, that would have much less effect on intelligibility (trials #11 - #15, and #21 - #25).  



 
Figure 19: Mean word scores and SDs (% correct) for speech in industrial-like noise.  Continuous noise unprocessed 

at SNR of -2 dB (column 1, shaded) and SNR of -8 dB (column 2); Intermittent noise at SNR -8 dB to -2 dB 
unprocessed (column 3, cross hatched) and processed by IBM (column 4, cross hatched); continuous noise 

processed by IBM at SNR of -2 dB (column 5, shaded) and SNR of -8 dB (column 6).  For more information, see text. 
 

 
Listening tests were undertaken in the simulated industrial-like noise by thirteen subjects 

who possessed normal hearing (mean age 26.5 years, range 20 - 44).  The results are shown in 
Figures 19 and 20 for processing by algorithms containing an IBM and BM, respectively.  In 
these bar graphs mean word scores (% correct) with SDs are shown both with and without 
signal processing.  The performance of the algorithms in intermittent noise, which evaluates 
their capacity to improve speech intelligibility when sounds are changing in intensity, can be 
seen by comparing columns 3 and 4 in both diagrams (cross hatched shading).  The former 
gives the mean word score before signal processing when the speech SNR is switching 
between -2 and -8 dB and the latter the word score after processing this intermittent noise by an 
algorithm containing an IBM (Figure 19) or a BM (Figure 20).  It can be seen from the bar 
graphs that both algorithms can respond to the changing sound intensity and improve 
intelligibility with the IBM increasing the word score by 19.6% and the BM by 6.3%.   

 
Figure 20: Mean word scores and SDs (% correct) for speech in industrial-like noise.  Continuous noise unprocessed 

at SNR of -2 dB (column 1, shaded) and SNR of -8 dB (column 2); Intermittent noise at SNR -8 dB to -2 dB 
unprocessed (column 3, cross hatched) and processed by BM (column 4, cross hatched); continuous noise 

processed by BM at SNR of -2 dB (column 5, shaded) and SNR of -8 dB (column 6).  For more information, see text. 
 



The increase in mean word score produced by the IBM was statistically significant but this was 
not the case for the BM, where p = 0.1. 

The other information in the bar graphs of Figures 19 and 20 enables these improvements in 
intelligibility in intermittent noise to be put in perspective.  The word scores in columns 1 and 2 
are for unprocessed speech in continuous noise at an SNR of -2 dB (shaded) and at an SNR of 
-8 dB, respectively.  The word scores in columns 5 and 6 are for speech in continuous noise at 
an SNR of -2 dB (shaded) and at an SNR of -8 dB after processing by either the IBM algorithm 
(Figure 19) or the BM algorithm (Figure 20), respectively. 

Reference to Figure 19 reveals the algorithm containing an IBM increased the word score in 
intermittent noise to equal that of the unprocessed continuous noise at an SNR of -2 dB (73.4% 
- compare columns #4 and #1).  This performance is not as good as when the algorithm 
processed a continuous noise at an SNR of -2 dB (83.4% - column #5).  Also, the word score 
obtained in intermittent noise when processed by the IBM algorithm is only slightly increased 
over that obtained when processing the continuous noise at an SNR of -8 dB (73.4% versus 
71.6% - compare columns #4 and #6). 

The performance of the algorithm containing the BM is somewhat different.  Reference to 
Figure 20 shows the word score in intermittent noise when processed by the algorithm is less 
than that of the unprocessed continuous noise at an SNR of -2 dB (60.1% versus 73.4% - 
compare columns #4 and #1).  The performance is also not as good as when the algorithm 
processed a continuous noise at an SNR of -2 dB (79.7% - column #5), but the word score in 
intermittent noise is a substantial improvement over that obtained when the algorithm processed 
continuous noise at an SNR of -8 dB (60.1% versus 48.7% - compare columns #4 and #6). 

The difference in the performance of the two algorithms in intermittent noise is influenced by 
the ability of the IBM to improve speech intelligibility more than the BM in continuous noise at 
low SNRs, an observation that has been made previously and can be seen in the results of 
Figures 16 - 18.  

 
 

5.0  Technology Capability Assessment and Readiness Assessment 
 

 Comments on the capability of the technology have been made in the previous section and 
are discussed further here.  While the focus of algorithm development during the original project 
for the Alpha Foundation was restricted to face-to-face speech communication between persons 
wearing a hearing protector containing electronics or an eHPD, a second scenario is recognized 
here.  This concerns the related situation wherein the talker's speech is intelligible and is 
available separately from the environmental noise as a second input for the control signal of the 
algorithm (see Figure 1).  The second scenario may have application to mining when speech 
from a remote talker is transmitted over a wireless or wired link to a listener wearing a 
communication headset or eHPD.  This scenario may be satisfied by an algorithm containing an 
IBM while the first requires an algorithm containing either a DM or a BM. 

In this study, the performance of algorithms involving direct modulation (DM) and binary 
masking both with and without access to speech and noise separately, IBM and BM 
respectively, has been established in different noises and at different SNRs.  The noises 
possessed a range of frequency spectra that either decreased, increased or remained 
unchanged in sound pressure level at frequencies below that of the maximum sound pressure 
level of speech (see Figure 4).  At higher frequencies, all noises decreased in sound pressure 
level with increasing frequency at about the same rate as that of speech.  It is thus believed that 
the performance of the algorithms has been determined for a range of noises typical of those 
expected to be found in mines.  Additionally, the performance of algorithms employing binary 
masking has been determined in intermittent noise.  

The use of different SNRs implies that listening tests were performed at different sound 
levels.  Moreover, the conduct of listening tests in three different experimental settings - one 
conducted under controlled conditions within a controlled environment supervised by trained 
audiologists, a second conducted in an audiometric room in our laboratory where subjects 
themselves fitted their earphones, and a third commonly conducted at home where subjects 
chose the headphones or earphones to wear and the sound level for the tests - introduced an 
uncontrolled range of sound levels into each test.  Thus we believe we have fully addressed the 
requirements of the mission statement. 



 
Figure 21: Mean word scores (% correct) for the same MRT first unprocessed and then processed by an IBM 

algorithm, shown by squares, for all noises and SNRs.  Minimum target increase in word scores after processing 
designed to improve speech intelligibility is suggested by the thick line.  Thin line indicates zero increase in word 

score achieved by signal processing (for further explanation, see text) 
 
 

Under all the operating conditions imposed by the listening tests our 24-subband IBM 
algorithm provides improvements in speech intelligibility, which increase as the listening 
conditions become more challenging (i.e. large negative SNRs), as is desired.  This is most 
easily confirmed by reference to Figure 21.  In this diagram, mean word scores are expressed 
as the percentage of words correctly identified (%c), as before.  Those obtained without signal 
processing, including the sounds heard when wearing a simulated passive HPD, are plotted on 
the abscissa and those after processing by the IBM algorithm on the ordinate.  In this way the 
mean word scores obtained listening to the same audio file comprising one test of 25 trials can 
be represented in Figure 21 by a data point (shown as a filled square).  Thus, if the mean word 
score recorded by subjects listening to unprocessed sounds is identical to that recorded when 
listening to the same test processed by our algorithm, then the filled square will fall on the thin 
line bisecting the graph diagonally (from coordinates 25,25 to 105,105).  An improvement in 
intelligibility obtained by the signal processing will result in the square lying above the thin line.  
The minimum target increase in word scores after processing designed to improve speech 
intelligibility suggested in Figure 12 is shown here by the thick line.  The importance of this 
presentation of the results lies in it capturing all listening conditions to all noises evaluated.  
Thus algorithms that produce word scores after signal processing on or above the thick line are 
judged to fulfill all requirements for improving speech intelligibility irrespective of the listening 
conditions - that is, listening in noise with little or substantial low frequencies, noise that is louder 
than the speech or not, and noise that changes in intensity.     

In can be seen from Figure 21 that the performance of the IBM meets or exceeds the 
minimum target suggested in Figure 12 at all words scores recorded when speech in noise was 
not processed by our algorithm (from 33% to 87%).  This large range of mean word scores was 
obtained in listening tests involving three different noises and seven different SNRs.  The word 
scores recorded by individuals in tests without signal processing ranged from 8.8% to 95.2%, 
and from 53.2% to 100% after processing by the IBM.  In consequence, we believe this 
algorithm has demonstrated the functional capability for in-service operational application to 
situations in which speech and noise are available separately. 

The DM and BM algorithms produced smaller improvements in speech intelligibility than the 
IBM.  The performance of these algorithms is presented in the same format as that for the IBM 
in Figure 22 for the BM algorithm and Figure 23 for the DM algorithm (see next page).  Listening 
tests involved three different noises and seven different SNRs for the BM algorithm and two 
noises and three SNRs for the DM algorithm. 

 



 
Figure 22: Mean word scores (% correct) for the same MRT first unprocessed and then processed by a BM algorithm, 
shown by diamonds, for all noises and SNRs.  Minimum target increase in word scores after processing designed to 
improve speech intelligibility is suggested by the thick line.  Thin line indicates zero increase in word score achieved 

by signal processing (for further explanation, see text) 
 
 

Reference to Figure 22 reveals that the BM algorithm does achieve the minimum target 
performance suggested in Figure 12 for unprocessed speech in noise at word scores greater 
than ~60%.  However, the target word score is not achieved at smaller initial word scores, 
though comparatively small improvements in intelligibility were obtained at three of the four word 
scores that were less than 60%.  The word scores recorded by individuals in tests without signal 
processing ranged from 8.8% to 95.2% and from 34.7% to 100% after processing by the BM. 

Reference to Figure 23 reveals the performance of the DM algorithm is similar to that of the 
BM in that it does achieve the minimum target suggested in Figure 12 for unprocessed speech 
in noise at word scores greater than ~67%.  However, the target word score is not achieved at  

  
 

 
Figure 23: Mean word scores (% correct) for the same MRT first unprocessed and then processed by a DM 

algorithm, shown by squares, for all noises and SNRs.  Minimum target increase in word scores after processing 
designed to improve speech intelligibility is suggested by the thick line.  Thin line indicates zero increase in word 

score achieved by signal processing (for further explanation, see text) 
 



smaller initial word scores. For individuals, the word scores in tests without signal processing 
ranged from 42.4% to 100% and from 47.2% to 100% after processing by the DM.   

While smaller increases in word scores were expected for both algorithms, they 
nevertheless confirm the potential for improving speech intelligibility by our signal processing 
during face-to-face communication, when speech and noise are intermixed and never available 
separately.  Implementation of either of these algorithms in an eHPD would provide modest 
improvements in intelligibility under almost all listening conditions, but both would benefit from 
further refinement.  Based on the work reported here and the algorithms evaluated in our 
previous study for the Alpha Foundation, it is not clear how the DM algorithm could be modified 
to improve its performance.  However, the limitations of the BM algorithm are thought to be 
related to the formulation of the magnitude ratio, and the potential increase in speech 
intelligibility achievable, in principle, is shown by the performance of the IBM algorithm.  An 
attempt is being made to develop an improved mask after the completion of this study, and 
progress to date is described in an Appendix to this report. 

Even after an algorithm is developed that can substantially increase the intelligibility of 
speech in a noisy environment, it must be transferred to electronics capable of 
microminiaturization.  The computational complexity of 24-subband IBM and BM algorithms will 
require careful implementation within a small, lightweight package to function effectively 
throughout a work shift and be worn as part of a miner's equipment or attached to, or integrated 
into, a miner's helmet.  Ultra low-powered digital signal processors (DSPs) or field-
programmable gate arrays (FPGAs) will be required for a body-worn or helmet-mounted device 
and will need to be identified for this application.  While the necessary performance can always 
be obtained by employing a second DSP, an FPGA may be more suited to this application in 
view of the amount of parallel processing (i.e., 24 parallel channels).  Coding the device 
selected with the algorithm to provide the desired performance will require expertise and time. 

We judge the Technology Readiness Level of the proof-of-concept to be level TRL 3 
("Analytical and experimental critical function and/or characteristic proof of concept"/NASA 
usage and "Experimental proof of concept"/European Union usage) of the current nine-unit 
scale (see https://en.wikipedia.org/wiki/Technology_readiness_level). 

 
 

6.0  Publication Record and Dissemination Efforts 
 

No presentations or publications have so far resulted from this work.  The accomplishments 
are described in the previous sections of this report.  A dissemination plan is not applicable at 
this time.  A patent application based on the binary masking algorithms is anticipated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7.0  Appendices 
 
7.1 References 
B. W. Anderson and G. R. Garinther, "Effects of active noise reduction in armor crew headsets," 

Audio Effectiveness in Aviation, AGARD-CP-596, pp. 20-1 - 20-6, (1997). 
Anon., "Log loader runs over worker at stave mill," KY FACE Report 94KY161 (1995). 
Anon., "NIOSH Criteria for a Recommended Standard: Occupational Exposure to Noise," DHHS 

(NIOSH) Publication 98-126, National Institute for Occupational Safety and Health, 
Cincinnati (1998). 

ANSI S1.1-2004 (R2009), "Specifications for octave-band and fractional octave-band analog 
and digital filters," American National Standards Institute, New York (2004). 

ANSI S3.1-1999 (R2003), "Maximum permissible ambient noise for audiometric test rooms," 
American National Standards Institute, New York (2003).  

ANSI S3.2-1989 (R2009), "Method for measuring the intelligibility of speech over 
communication channels," American National Standards Institute, New York (2009). 

ANSI S3.6-1996, "American National Standard specification for audiometers," American 
National Standards Institute, New York (1996). 

M. C. Anzalone, L. Calandruccio, K. A. Doherty and L. H. Carney, "Determination of the 
potential benefit of time-frequency gain manipulation," Ear Hear. 27, 480-492 (2006). 

F. Apoux, N. Tribut, X. Debruille and C. Lorenzi, "Identification of envelope-expanded sentences 
in normal-hearing and hearing impaired listeners," Hear. Res. 189, 13-24 (2004).    

K. Arehart, P. Souza, J. Kates, T. Lunner and M. Pedersen, "Relationships among signal fidelity, 
hearing loss, and working memory for digital noise suppression," Ear Hear. 36, 505-516 
(2015). 

A. A. Azman and R. L. Hudak (2011), "An evaluation of sound restoration hearing protection 
devices and audibility issues in mining," Noise Control Eng. J. 59, 622-630. 

D. R. Babich and E. R. Bauer, "Summary of longwall and continuous miner section noise 
studies in underground coal mines," Min. Eng. 58, 41-46 (2006).   

M. Bland, An introduction to medical statistics, Oxford University Press, Oxford U.K. (4th edition, 
2015). 

T. G. Bobick and D. A. Giardino, "The noise environment of the underground coal mine," 
Informational Report 1034, Mining Enforcement and Safety Administration, Washington 
(c1976), pp. 1-26. 

A.J. Brammer, G. Yu, E. R. Bernstein, M. G. Cherniack, D. R. Peterson, and J. B. Tufts, 
"Understanding speech when wearing communication headsets and hearing protectors 
with subband processing," J. Acoust. Soc Am. 136, 671-681 (2014). 

D. S. Brungart, P. S. Chang, B. D. Simpson, and DeLiang Wang, "Isolating the energetic 
components of speech-on-speech masking with ideal time-frequency segregation," J. 
Acoust. Soc. Am. 120, 4007-4018 (2006). 

H. E. Camargo, A. S. Azman and L. Alcorn, "Development of noise controls for longwall shearer 
cutting drums," Noise Control Eng. J. 64, 573-585 (2016). 

K. Cardosi, P. Falzarano and P. Han, "Pilot-controller communication errors:  An analysis of 
aviation safety reporting (ASRS) system reports".  DOT/FAA/AR-98/17.  U.S. 
Department of Transportation, Office of Aviation Research, Washington (1998). 

S.-W. Choi, C. Peek-Asa, N.L. Sprince, R.H. Rautiainen, K.J. Donham, G.A. Flamme, P.S. 
Whotten and C. Zwerling, "Hearing loss as a risk factor for agricultural injuries," Am. J. 
Ind. Med. 48: 293-301 (2005). 

K. Chung, "Effective compression and noise reduction configurations for application to hearing 
protectors," J. Acoust. Soc. Am. 121, 1090-1101 (2007). 

K. Chung, J. Tufts and L. Nelson, "Modulation-based digital noise reduction for application to 
hearing protectors to reduce noise and maintain intelligibility," Human Factors 51, 78-89 
(2009). 

P. Clarkson and S. F. Bahgat, "Envelope expansion methods for speech enhancement," J. 
Acoust. Soc. Am. 89, 1378-1382 (1991). 

J. W. Collins, G. S. Smith, S. P. Baker and M. Warner, "Injuries related to forklifts and other 
powered industrial vehicles in automotive manufacturing," Am. J. Ind. Med. 36, 513-521 
(1999). 



T. Dolan and D. O'Loughlin, "Amplified earmuffs: Impact on speech intelligibility in industrial 
noise for listeners with hearing loss," Am. J. Audiol. 14, 80-85 (2005).  

R. Drullman, J. M. Festen and R. Plomp, "Effect of temporal envelope smearing on speech 
reception," J. Acoust. Soc. Am. 95, 1053-1064 (1994). 

J. R. Dubno, A. R. Horowitz and J. B. Ahlstrom, "Word recognition in noise at higher-than-
normal levels: Decreases in scores and increases in masking," J. Acoust. Soc. Am. 118, 
914-922 (2005). 

ECMA TR/105. "A shaped noise file representative of speech," European Computer 
Manufacturers Association, Geneva (2012), pp. 1-13. 

A. S. House, C. W. Williams, M. H. L. Hecker and K. D. Kryter, "Articulation testing methods: 
Consonant differentiation with a closed-response set," J. Acoust. Soc. Am. 37, 158-166 
(1965).  

G. J. Joy and P. J. Middendorf, "Noise exposure and hearing conservation in U. S. coal mines - 
A surveillance report," J. Occup. Environ. Hygiene 4, 26-35 (2007). 

G. Kim, Y. Lu, Y. Hu and P. C. Loizou, "An algorithm that improves speech intelligibility in noise 
for normal-hearing listeners," J. Acoust. Soc. Am. 126, 1486-1494 (2009).  

U. Kjems, J. B. Boldt, M. S. Pedersen, T. Lunner and DeLiang Wang, "Role of mask pattern in 
intelligibility of ideal binary-masked noisy speech," J. Acoust. Soc. Am. 126, 1415-1426 
(2009).  

T. LaTourette, D. J. Peterson, J. T. Bartis, B. A. Jackson and A. Houser, Protecting Emergency 
Responders: Community Views of Safety and Health Risks and Personal Protection 
Needs, Vol. 2, Rand Science and Technology Institute (2003). 

T. Langhans and H. Strube, "Speech enhancement by nonlinear multiband envelope filtering.  
In: ICASSP '82, IEEE International Conference on Acoustics, Speech and Signal 
Processing, edited by C. Gueguen, Institute of Electrical and Electronic Engineers, New 
York (1982), pp. 156-159.    

N. Lezzoum, G. Gagnon and J. Voix, "Noise reduction of speech signals using time-varying and 
multi-band adaptive gain contol for smart digital hearing protectors," Applied Acoustics 
109, 37-43 (2016). 

N. Li and P. C. Loizou, " Factors influencing intelligibility of ideal binary-masked speech: 
Implications for noise reduction," J. Acoust. Soc. Am. 123, 1673-1682 (2008).   

C. Lorenzi, F. Berthommier, F. Apoux and N. Bacri, "Effects of envelope expansion on speech 
recognition," Hear. Res. 136, 131-138 (1999). 

R. L. McKinley, V.S. Bjorn and J.A. Hall, "Improved hearing protection for aviation personnel," 
NATO Technical Report RTO-MP-HFM-123, Neuilly-Sur-Seine, France, pp. 13-1 – 13-12 
(2005).   

Mines Safety Health Administration web site 
www.msha.gov/STATS/PART50/WQ/2004/WQ045T03.asp 

B. C. J. Moore, An Introduction to the Psychology of Hearing, Academic Press, New York (6th 
edition, 2013). 

T. C. Morata, A.C. Fiorini, F.M. Fischer, E.F. Krieg, L. Gozzoli and S. Colacioppo, "Factors 
affecting the use of hearing protectors in a population of printing workers," Noise and 
Health 4, 25-32 (2001). 

T. C. Morata, C. L. Themann, R. F. Randolph, B. L. Verbsky, D. C. Byrne and E. R. Reeves, 
"Working in noise with a hearing loss: Perceptions from workers, supervisors, and 
hearing conservation program managers," Ear Hear 26, 529-545 (2005). 

L. Murray-Johnson, K. Witte, D. Patel, V. Orrego, C. Zuckerman, A.M. Maxfield and E.D. 
Thimons "Using the extended parallel process model to prevent noise-induced hearing 
loss among coal miners in Appalachia," Health Education Behavior 31, 741-755 (2004). 

D. S. Patel, K. Witte, C. Zukerman, L. Murray-Johnson, V. Orrego, A.M. Maxfield, S. Meadows-
Hogan, J. Tisdale and E.D. Thimons, "Understanding barriers to preventive health 
actions for occupational noise-induced hearing loss," J. Health Commun. 6, 155-168 
(2001). 

P. Plyler and M. Klumpp, "Communication in noise with acoustic and electronic hearing 
protection devices," J. Am. Acad. Audiol.14, 260-268 (2003).   

R. S. Schlauch and P. Nelson, "Pure-tone evaluation," in Handbook of Clinical Audiology, edited 
by J. Katz, L. Medwetsky, R. Burkard and L. Hood, Lippincott Williams & Wilkins, 
Baltimore (6th edition, 2009), pp. 30-49. 



A. Suter, "The handicap resulting from noise-induced hearing loss," Best Practices in Hearing 
Loss Prevention, DHHS (NIOSH) Pub. 2001-157, Department of Health and Human 
Services, Washington, pp. 3-8 (2001).  

A. H. Suter, Communication and Job Performance in Noise: A Review, Monograph 28, 
American Speech-Language-Hearing Association, Rockville (1992). 

M. L. Szary, Y. P. Chugh and J. Hirschi, "Noise variability in underground room and pillar coal 
mines," Int. J. Occup. Safety & Ergonom. 17, 301-308 (2011). 

S. Tak, R. R. Davis and G. M. Calvert, "Exposure to hazardous workplace noise and use of 
hearing protection devices among US workers - NHANES, 1999-3004," Am. J. Industr. 
Med. 52, 358-371 (2009).  

J. B. Tufts, M. A. Hamilton, A. J. Ucci and J. Rubas, "Evaluation by industrial workers of passive 
and level-dependent hearing protectors," Noise & Health, 13, 26-36 (2011). 

R. A. van Buuren, J. M. Festen and T. Houtgast, "Compression and expansion of the temporal 
envelope: Evaluation of speech intelligibility and sound quality," J. Acoust. Soc. Am. 105, 
2903-2913 (1999). 

M. van Charante, A.W. Mulder and P.G.H. Mulder, "Perceptual acuity and the risk of industrial 
accidents," Am. J. Epidemiol. 131, 652-663 (1990).  

R. M. Warren, K. R. Riener, J. A. Bashford and B. S. Brubaker, "Spectral redundancy: 
Intelligibility of sentences heard through narrow spectral slits," Percept. Psychophysics 
57, 175-182 (1995). 

A. Wiinberg, J. Zaar and T. Dau, "Effects of expanding envelope fluctuations on consonant 
perception in hearing-impaired listeners," Trends in Hearing 22, 1-12 (2018).  

P. Wilkins and A. M. Martin, "Hearing protection and warning sounds in industry – A review," 
Applied Acoustics 21, 267-293 (1987). 

K. K. Wójcicki and P. C. Loizou, "Channel selection in the modulation domain for improved 
speech intelligibility in noise," J. Acoust. Soc. Am. 131, 2904-2913 (2012). 

 
 
 
 
 
 
 
 
 



7.2 Hearing Function Questionnaire 
 
 
Please circle your response to the following questions. 
 
1.  Does a hearing problem cause you to feel embarrassed when meeting new        
     people?          YES  
           SOMETIMES  
           NO  
    
2.  Does a hearing problem cause you to feel frustrated when talking to members 
     of your family?         YES   
           SOMETIMES  
           NO   
 
3.  Do you have difficulty hearing when someone speaks in a whisper? 
           YES   
           SOMETIMES  
           NO  
  
4.  Do you feel handicapped by a hearing problem?     YES   
           SOMETIMES  
           NO   
 
5.  Does a hearing problem cause you difficulty when visiting friends, relatives, 
     or neighbors?         YES   
           SOMETIMES  
           NO   
 
6.  Does a hearing problem cause you to attend religious services less often than 
     you would like?         YES   
           SOMETIMES 
           NO   
 
7.  Does a hearing problem cause you to have arguments with family members? 
           YES   
           SOMETIMES  
           NO  
   
8.  Does a hearing problem cause you difficulty when listening to TV or radio? 
           YES   
           SOMETIMES  
           NO   
 
9.  Do you feel that any difficulty with your hearing limits or hampers your 
     personal or social life?        YES   
           SOMETIMES  
           NO  
   
10. Does a hearing problem cause you difficulty when in a restaurant with 
      relatives or friends?        YES   
           SOMETIMES  
           NO   
 
 
 
SCORE  __________       [Examiner score:  No - 0;  Sometimes - 1;  Yes - 2] 



7.3 Postscript - Improving Magnitude Ratio for Detecting Speech in Noise  
Following completion of the study for the Alpha Foundation on "Improving Communication in 

Noise for Miners Wearing Hearing Protection: Algorithms for Mine Machinery Noise" it was 
evident that improvements were required to the magnitude ratio in order to improve the 
detection of speech in noise.  An attempt is being made to derive the magnitude ratio from the 
ratio of envelopes representing an estimate of the speech to an estimate of the noise at all 
modulation frequencies in a subband. 

The initial results are shown for one subband in Figure A1 below.  In this diagram the 
performance of the original magnitude ratio, which was used to obtain the results in this report, 
is shown to the left (Figure A1A), and the revised magnitude ratio is shown to the right (Figure 
A1B).  Below each are the corresponding time-aligned signals for the IBM, which are the same 
in both cases. 

Close inspection of the magnitude ratio time histories reveals that the amplitude of the 
revised magnitude ratio is much greater than the original version (i.e., compare scales of top 
waveforms under "Binary Mask" in Figure A1B with Figure A1A).  In fact, while the peaks of the 
new metric are approximately twice the amplitude of those of the original magnitude ratio, the 
baseline of the background "noise" is close to zero while that of the original metric is close to  
 

 

 
Figure A1: Time-aligned time histories for one subband showing binary mask (BM) and ideal binary mask (IBM) 

processing of speech in noise. A - Original BM used to compute results in this report, B - revised BM. 
Mask waveforms are shown for BM and IBM with corresponding subband outputs. 

 
 



unity.  These observations suggest that the revised magnitude ratio will possess better 
resolution of speech in noise than the original version and hence improve detection of speech in 
noise.  This belief may be confirmed by examining the subband output after applying the 
different binary masks. 

If attention is turned to the lower parts of the diagrams, which are the same in Figures A1A 
and A1B, it can be seen that the IBM detects speech seven times during the time period shown, 
that is, each time the SNR exceeds the threshold of -5 dB (shown by the horizontal red line).  
Reference to the subband output after applying the IBM shows the sounds transmitted by the 
mask, which appear as seven peaks of varying intensity in a background of environmental noise 
(see bottom time histories in Figures A1A and A1B).  That these peaks are in fact MRT 
sentences separated by ~3 s has been confirmed by listening tests. 

If, now, the subband outputs of the two binary masks are compared, it can be seen that 
more of the speech sounds are transmitted by the new mask as evidenced by larger peak 
values or longer outputs (i.e., compare magnitudes and/or durations of subband outputs after 
applying the binary masks at around 3, 7,15 and 28 s).  However, spurious signals are 
incorrectly identified as speech by the new mask at around 9 and 22 s (and also, though less 
definitively, by the original mask).  The reason for the false positives is unclear, though they are 
most likely associated with details of the computation of the magnitude ratio and selection of the 
mask threshold.  They will, of course, be the subject for future work involving further revision of 
the mask.  Nevertheless, the inclusion of all subband modulation frequencies in the new mask 
and its improved resolution compared to the original mask are considered of great significance 
for improving speech intelligibility in noise by a BM algorithm.     


