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1.0 Executive Summary  

Prototype tests of new software tools of an Early Warning System (EWS) has been successfully 

completed during the past four years. The EWS concept for preventive intervention of mining safety and 

health incidents was incepted and first tested in 2014-2015 in a prior research project funded also by the 

Alpha Foundation. The proof-of-principle test at that time used the native software tools in Ventsim, a 

commercially available mine ventilation and contaminant transport model.  

The main goal of the follow-up work was to develop a prototype EWS safety system and prove by tests 

its performance using Atmospheric Monitoring Systemô data collected real-time during operations from 

partner mines. The new and innovative components of EWS to be tested were: (1) time  expansion into 

the future from the real-time monitoring signals by forecasting in accelerated, simulation-time from the 

data to predict any likely event in the near future that may compromise safety; and (2) space expansion 

from the AMS locations into the entire mine, in order to evaluate safety at any critical working area, even 

at a place where no monitoring station were installed.  

The spatial and temporal expansions require high-performance numerical simulation of the mine site 

real-time, synchronized with the mining operations to forecast in time and to expand in space model data 

to all locations of interest. For the tasks, we pursued a high-performance, Dynamic Mine Ventilation 

Model (DMVM) using the Multiflux  code with advanced, time-dependent ñthermal flywheelò simulation 

capabilities. Such dynamic model element is needed to analyze and forward-predict fast changes in 

temperature and contaminant concentrations.  

A research partnership was formed between UNR and Ventsim Howden (previously Ventsim Chasm) 

to pursue the development of EWS and to link it to the most popular ventilation and contaminant modeling 

tool, used by over a thousand mining companies. New software components were needed to improve 

Ventsimôs native models for time-dependent, dynamic simulations in accuracy and computational speed 

for real-time analysis. These new models of the EWS were included in the DMVM, linked to Ventsimôs 

Graphical User Interface for model configuration setup.  

On a parallel timeline, we also searched for applicable tools for EWS in Information Technology (IT), 

using óbig dataô, Machine Learning (ML), Artificial intelligence (AI), and Neural Networks (NN). Various 

Neural Network (NN) models were tested for signal trend analysis and forward prediction capabilities, 

obtaining moderate results with limited time gains (Dias et al., 2021; Dias, 2021). A refocused study 

experimenting with time series analysis and forward prediction resulted in improved AI models for real-

time EWS applications [3]. A new, dynamic ML model was developed for e.g., barometric pressure-driven 

methane liberation prediction from the gob and the freshly cut face of the long-wall panel. The matrix 

operator of the model is determined from real-time AMS data from a partner mine by the automatic ML 

process, without userôs input. The matrix operator can then be passed to the DMVM for forecasting 

methane liberation and concentration variations at the face in future time triggered by present, or future, 

forecasted barometric pressure variations. Similar to the dynamic methane liberation and concentration 

example, the matrix operator modeling tool is applicable to analyze and predict other hazardous 

atmospheric processes.  

We received real-time AMS data from two operating mines for the research project: a few weeks of 

temperature, humidity, and gas concentrations data from a metal mine in Nevada; and a 327-day, 

continuous data from a full, long-wall panel extraction work from a coal mine in Australia. These data 

sets allowed us to evaluate the analytic and predictive capabilities of the EWS during normal mining 

operations.  
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Comparisons between measured AMS data from normal mining operations and simulated results from 

the DMVM model showed excellent agreements in test examples. Calibration of the DMVM model inputs  

were necessary when model inputs were not constrained sufficiently due to lack of prior data. Direct 

matching of the AMS data sets from the mines with various DMVM models showed that the EWS can 

assist in self-calibrating the DMVM model. Assisting in model input calibration by matching model output 

with measured data is an intuitive process supported by the EWS method. To wit, a root-cause analysis of 

a signal deviation (i.e., due to model boundary condition error) from expected value (i.e., AMS data) is 

analogous to self-calibration of the model for a specific input variable. 

 Synthetic hazard events were generated manually by perturbing the AMS signals for testing the 

forward prediction capabilities of the EWS software. We demonstrated by a series of numerical 

simulations that the DMVM and AI-ML elements of EWS can (a) recognize hazardous atmospheric 

conditions in their early evolution from AMS data; (b) find likely root causes for the event; (c) fast-

forward-predict for likely outcomes of the root-cause problem; and (d) send a warning, triggered signal 

for preventive intervention of an impending malfunction or accident. The recognition of an upcoming 

hazard in its progression from (a) through (d) early on is the basis to prevent an impending accident. 

In the last year of the project, we discovered that the root-cause analysis and the subsequent fast-

forward prediction of an impending hazardous problem can be fused into a single process. The new, 

integrated AI process is triggered by any AMS signalôs deviation from its normal range, followed by a 

fast-forward prediction of the AMS signal trend until it reaches and crosses the hazard threshold for 

prompting a warning message. The DMVM model elements are needed only for decomposing the possible 

input variables (such as, e.g., the air flow rate, the methane concentration at the main gate,  the barometric 

pressure, and the root-cause methane liberation flux rate from the face and the gob) affecting the targeted 

output variable (such as, e.g., the output concentration of methane at the tail gate). After decomposition, 

a direct evaluation of the unknown root-cause of the methane liberation flux rate can be directly evaluated 

from the AMS signals by the ML, and AI processes continuously and real-time.  

In summary, the protype of the EWS software tools are completed and tested using a combination of 

DMVM , ML of the AMS signal and AI for triggering a warning message for acting with preventive 

measures before the observed, critical AMS signal may cross an accident threshold. The time gain depends 

on the changing rate of the AMS signal. In a moderately fast, deteriorating process with an evolution time 

of several hours, the time gain maybe about an hour in some examples (Danko, 2021; Danko, 2022). When 

the convolutional time series model is used for the identification of the contaminant transport system of 

the mine from AMS data, a prevention-focused engineering design may be used to achieve much larger 

time gains of several hours by triggering the EWS process by signals other than that of AMS, such as from 

weather forecast (Danko, 2022).  

The results of the EWS  project has been published (Dias et al., 2021; Danko, 2021; Danko, 2022), 

showing an overwhelming advantage of analyzing AMS data continuously and real time, to foresee safety 

and health hazards in their evolution for preventive interventions. The prototype tests were completed 

with the cooperation of Ventsim developers. Howden Ventsim is attentive in testing the EWS in operating 

mines and marketing it if interest from the mining industry or health and safety organizations is presented. 

2.0 Problem Statement and Objective   

The overall goal of the research project is to develop and test a prototype software of EWS for accident 

prevention by analyzing the mineôs physical atmospheric system by preventive-focused engineering 

design as well as real-time AMS data using numerical simulation, ML and AI, followed by forecasting 

likely future outcomes of critical atmospheric conditions to safety and health. The input-output functional 
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components of EWS are linked to the GUI elements of Ventsim for easy setup of the configuration by the 

user.  

Two complementary but equally recommended types of EWS applications were defined during project 

execution for mine safety and health improvements by preventive intervention measures:  

(Type 1). Unexpected, real-time, preventive EWS intervention by the recognition of an accident-prone 

or health-hazard-prone atmospheric event, triggered by the analysis of the AMS signals;   

(Type 2). Anticipated, model-prevented EWS intervention for any potential, accident-prone or health-

hazard-prone atmospheric condition, determined by prevention-focused engineering design, triggered 

real-time by the analysis of a disturbing signal, either coming from the mineôs AMS or from other signal 

(for example, weather forecast data).  

 Tasks in either (Type 1) or (Type 2) rely on the same EWS model and software tools. The input data 

handling to trigger the EWS is different in (Type 1) and (Type 2), requiring real-time AMS data handling 

in (Type 1), whereas a preparatory design analysis of the atmospheric system processes of the mine is 

needed for the task in (Type 2), in addition to real-time analysis of a mine-disturbing signal that may 

originate from data outside of the AMS of the mine (e.g., area weather data).   

The specific goals of the development of the prototype EWS are to:  

¶ Prove reliability of the experimental prototype EWS system using the AMS signals from 

commercial, approved monitoring sensors; 

¶ Show the reliability and the self-calibration ability of the information system of the mine 

ventilation and contaminant concentration dynamic model including the DMVM component under 

operating conditions; 

¶ Test the capability of fast forward prediction component in DMVM at any time triggered by any 

outside event or a request from the user to check for future threshold crossing within the EWS;  

¶ Quantify the time advance for supporting intervention measures before the accident would have 

happened in emulated, what-if scenarios using off-line computer simulations for hypothetical, 

perceived, and relevant accident scenarios; 

¶ Support mine management with output of real-time distress signal and accident-prone case 

definition for preventive intervention if imminent danger is recognized for mine safety;  

¶ Provide a periodic summary chronicle or real-time report for safety factor variations with time at 

critical locations for health conditions;  

¶ Provide a periodic summary chronicle or real-time report for under- or over-ventilation for 

supporting OVC and VOD control decisions. 

 

3.0 Research Approach:   

The study design include 10 tasks spread over the extended, four years of research period. The 

Atmospheric Monitoring System (AMS) layout of the mine is mapped in Ventsim Control in the GUI for 

connecting the sensorôs locations to the DMVM for the mines. The unexpected (Type 1) EWS tasks are 

best supported by the current Ventsim Control software, whereas both Ventsim Control and Ventsim 

Design are needed to work in the anticipated (Type 2) EWS tasks.  

 The prototype EWS software is developed to analyze continuously real mine data in metal and coal 

mines. The EWS software uses the high-performance Multiflux  solver for the DMVM model elements for 

matching mine data and predicting future simulated outcomes. The DMVM is designed with the 

cooperation of the Ventsim software development team under a partnership agreement to work with 

Ventsim Visual using its Graphical User Interface (GUI).  
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Continuous developments in the Ventsim Design software has improved the native solver tools both 

in accuracy and speed. Most of the additional functions needed in the EWS are currently supported by 

Ventsim Design, except for the enhancements included in the EWS such as the DMVM and the AI model 

components. The DMVM model elements are still needed for the short-time dynamic simulations, for 

example, for diurnal temperature and concentration variation predictions. For prevention-focused 

engineering design in Type 2 applications, the EWS uses a convolutional time series ML-AI model for 

the identification of the contaminant transport system of the mine from real-time AMS data, imported for 

from the database of Ventsim Control. 

 The calibrated DMVM model extends the EWS applicability to the entire mine airway system by 

creating DMVM simulation data for mine areas where AMS data are not available. For the unmonitored 

areas, the EWS uses the real-time DMVM model output data for safety and health analysis in the same 

manner the EWS is used in the monitored locations. 

 The primary function of EWS is to support preventive safety and health management. The additional 

benefits of EWS is cost savings in ventilation design and control. The EWS is well suited to be part of 

Ventsim Control for continuously analyze the AMS data stream and enhance it using the model-based, 

forward-in-time output information to evaluate health-effecting atmospheric conditions at any critical 

location and time in a mine.  

 EWS is aimed at providing support data to safety and health management to operate a mine according 

to Optimized Ventilation Control (OVC) by optimizing safety, health, and cost benefits if desired, now part 

of Ventsim Control. In addition, a mine may use the output data from the EWS for Ventilation on Demand 

(VOD) control if desired, always keeping the operation safe and economical at any location and time, also 

a task delegated to the basic function of Ventsim Control.  

Task 1. Complete the EWS Framework.  

The work continued for three years on Task 1, described in detail in interim reports and summarized  

in Appendix 1.   

a. GUI elements of the EWS  

The GUI elements of the EWS linked to Ventsim Design and Ventsim Control are listed and 
shown in Figure 1.  

The planning was completed for the functions of each EWS element and GUI component in 

preparation for the on-site discussion with the Ventsim Developers for EWS integration in parts A 

through F as follows. (Note the modification of Figure 1 from that in the 2019 Annual Report by the 

addition of Ventsim Design and the removal of Ventsim Live after the onsite work with the Ventsim 

Developers.)  
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Figure 1. The description of the GUI elements of the EWS linked to Ventsim Design and Ventsim Control. 

 

b. Data and Hardware configuration of the EWS 

The design layout of the EWS, the basic data flow and hardware components are shown in Figure 2.  

c. AMS network mapping to EWS.  

The conceptual data flow configuration of the EWS is shown in Figure 3. 

 

 

  

 

Mine with sensor 
array   

AMS data 
acquisition 

system  

Monitored 
database 

management 
computer  

Existing AMS 
installation at a mine 

A 

E 
Real-Time 
workshop 

computer running 
Ventsim Control 

EWS tools for 
signal analysis 
and condition 

evaluation 
including 
forward 

prediction  

Real-time 
workshop 

control 
interface  

Expanded GUI in 
Ventsim Control 

C 

GUI for AMS 
data  

GUI for mine 
activity and 

control data 
(7) 

D 

Independent EWS GUI 
in Ventsim Control 

EWS process input data: 

Process control setup 

Report configuration 

Warning configuration 

Self-test  

Ventsim GUI to map 
sensor locations  

Ventsim GUI for model 
configuration 

Existing GUI in Ventsim 
Design and Control 

 

B 

F 

Periodic reports 
and live messages 

to mine  

Management actions 
support for accident 

prevention by 
intervention or 

ventilation control 
for cost savings  

Communication output  
in Ventsim Control 



 
 

6 
 

 
 

Figure 2. The design layout of the EWS with its basic data flow and hardware components. 
 

Task 2. The DMVM software in MULTIFLUX  (MF). 

The work continued for four years on Task 2 with developments and tests, described in detail in interim 

reports and summarized in Appendix 1.   

a. Dynamic model elements and configurations for air flow, heat, moisture, and contaminant 

concentration.  

The DMVM model in MF, its link to Ventsim Design, and comparisons are published in open-access 

journal article (Danko et. al, 2020). Recent DMVM improvements are explained in Appendix 1. The 

DMVM model linkage and calibration against AMS data streams are shown in Appendix 2. The results 

of a comparison example between the DMVM model and Ventsim simulation is shown with excellent 

match in Appendix 3. 

b. The gob model.  

Examples of model tests were carried out for methane concentration simulations in various stages 

during mining operation in the entire long wall panel.  Figure 4 shows the layout geometry of the full 
gob at day 327 of the completed mining operation. 
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Figure 3. The conceptual data flow configuration of the EWS. 

 

Task 3. The DMVM Model Calibrator.   

The work continued between years 2 and 3 on Task 3 as described in detail in interim reports and 

summarized in Appendix 1.   

a. DMVM model calibration processes. Examples of model calibration. 

Automatic, self-calibration processes were developed and tested based on matching AMS data trends 

with DMVM model predictions. Figures 5-7 show DMVM self-calibration tests examples at various 
ÌÏÃÁÔÉÏÎÓ ÁÔ ÔÈÅ ÍÏÖÉÎÇ ÔÈÅ ÓÈÅÁÒÅÒȭÓ ÇÁÔÅ ÁÎÄ ÉÎ ÔÈÅ ÇÏÂȢ &ÉÇÕÒÅ ψ ÓÈÏ×Ó ÔÈÅ ÅÖÁÌÕÁÔÉÏÎ ÒÅÓÕÌÔÓ ÏÆ 
the root cause of methane concentration variations at various points in the longwall panel, related 
to Figures 5-7 in terms of methane mass fluxes in the upstream airflow segments.  
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Figure 4. ! ÌÏÎÇ×ÁÌÌ ÐÁÎÅÌ ÏÆ Á ÃÏÁÌ ÍÉÎÅ ÐÁÒÔÎÅÒȭÓ ÍÉÎÅ discretized for gob modeling (309.7m x 
3,822m, with 7 x 327 internal grid lines) in the DMVM model in Ventsim. 
 

                           
Figure 5. Self-calibrated, simulated, and measured Methane concentrations at the Main Gate (MG) 

location in the longwall panel (the shearer location moves over 1 through 3,687 m in 327 days). 
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Figure 6. Self-calibrated, simulated, and measured Methane concentrations at the Tail Gate (TG) 

location in the longwall panel (the shearer location moves over 1 through 3,687 m in 327 days). 

 

 

Figure 7. Self-calibrated, simulated, and measured Methane concentrations at a gob location close to the 

longwall panel exit end (the shearer location moves over 1 through 3,687 m in 327 days). 

(MG , TG, and Panel Exit locations)  
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Task 4. Safety awareness signal processor.  

 Signal pattern recognition method developments with ML, AI, and NN models continued between 

years 2 and 4 on Task 4 as published (Dias, 2021, Dias et. al, 2021) and reported in the interim reports 

with results and conclusions. The developments and tests are summarized in Appendix 1.   

a. AMS signal patterns recognition.  

Signal pattern recognition methods were planned, developed and tested in examples using saved, real-

time data for 327 days from AMS of an operating coal mine in Australia. The narxnet-type NN was used 

in the first tests. The input data from AMS were flow rate, barometric pressure, and methane concentration 

at the MG location. The model target was the methane concentration variation at the TG location at a 

future time as a function of the input data variations over a past time interval of 50 days. For NN model 

training, a sliding window-type progression was used. Data from 1 to 50 time steps were used to learn 

methane concentration at the TG one time step (one day) ahead from the input variations. Figure 8 shows 

the comparison of the predicted and the measured methane concentrations over 270 sliding window 

predictions. As depicted, the one-day forward prediction from the NN model fails to follow well the 

measured concentration variation. Instead of forecasting with time gain (even for only one day), a time 

delay is seen of several days in the predicted concentration; and nearly all concentration spikes were 

missed by the NN model.    

 The NN narxnet models were further studied analyzing AMS data from a metal mine in Nevada. 
A few weeks of recorded, real-time AMS data were used to train over 8000 minutes temperature 
samples to predict the temperatures during the following 2000 time steps. Examples are shown 
for training and prediction performances in Figures 9 and 10 for two different sensor locations, 
depicting poor forecasting performance. 

 Several other types of NN models were tested over three years with various results, but none 
significantly favorable for EWS application, published in an international conference (Dias et al., 

2021) and in an M.S. thesis (Dias, 2021).   

           

Figure 8. Comparison of measured and predicted concentrations from a NN model. 
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Figure 9. .. ÍÏÄÅÌȭÓ ÔÒÁÉÎÉÎÇ ÁÎÄ Ðrediction for air temperature variations at sensor 1 location. 
 

 
 

Figure 10Ȣ .. ÍÏÄÅÌȭÓ ÔÒÁÉÎÉÎÇ ÁÎÄ Ðrediction for air temperature variations at sensor 2 location. 
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b. Analysis of AMS trends. 

To surpass the failed NN models, new methods were considered, designed, developed, and tested for 

real-time EWS applications over the years 2 through 4. 

A new dynamic model identification method was developed for continuous time series analysis and 

forward prediction applications. Quantum of data was defined over moving time intervals in sliding 

window coordinates for compressing the size of stored data while retaining the resolution of information. 

Quantum vectors formed the basis of a linear space for defining a dynamic quantum operator (DQO) 

model of the system defined by its data stream. The transport of the quantum of compressed data was 

modeled between the time interval bins during the movement of the sliding time window. The DQO model 

was identified from the samples of the real-time flow of AMS data over the sliding time window. A least-

square-fit identification method was developed for evaluating the parameters of the quantum operator 

model, utilizing the repeated use of the sampled data through a number of time steps. The method was 

tested to analyze, and forward-predict air temperature variations accessed from weather data as well as 

methane concentration variations obtained from measurements of an operating coal mine in Australia. The 

results showed efficient forward prediction capabilities, surpassing those using neural network and other 

methods for the same task.  

Only a few examples are selected in the report from the full, open-access publication of the DQO 

model (Danko, 2021) for illustrative purposes. Temperature data for 327 days were sampled at regular 5-

minute time intervals for quantum-processing described in the referenced publication for a model fitting 

and prediction exercise. At each of the Ὥ ρ to 327 ςψψ time steps, a separate DQO model was built 

using four days with sliding window width, ύ ψ ςψψςσπτ as set Ὓ. The goals of the exercise were 

to check the quality of (a) the DQO model fit for each time step, measured by the normalized absolute 

error between input data and model prediction at each time step; and (b) the DQO forward prediction steps 

of ᾀ  12 steps ahead at each time step, measured by the normalized absolute error between the known 

(but yet unused) input data at Ὥ ᾀ and the model forward prediction at Ὥ ᾀ time step. The sliding time 

window was moved from Ὥ ρ, starting from an initial assumption of all zero history quantum values. 

The DQO model was trained to match the last 20 quantum components only (for Ὧᶰσρȟυπ as just a 

short memory of the system was needed to learn for a ᾀ 12-step forward prediction.  

After the 400 coefficients of the ꜚ  matrix of the DQO model were determined from a least-square-

fit (LSQ) scheme at each Ὥ time step (where Ὥɴ Ὓ, and Ὓ is the set of a sufficiently large data set for a unique 

LSQ solution), the model prediction, ╠ , was calculated from the quantum-processed input data ╠  

taken at back-shifted time instants as: 

╠ ꜚ╠                             (1) 

The variation of the measured data ╠  and modeled ╠  quantum vector components for the Ὧᶰ
σρȟυπ components for the last moving window segment for Ὥɴ Ὓ are shown in Figures 11 a-h. The 

components of the ╠  and ╠ vectors with time are shown in (a)-(g) for Ὧᶰττȟυπ (with each 

individual ÐÁÉÒ ÁÎÄ Ὧ marked); and in (h) for Ὧᶰσρȟτσ (with only each Ὧ marked as no difference 

between ╠  and ╠  can be seen). Note that Figure 12 a shows the DQO model match to the 5-minute 

data as the quantum vector for Ὧ υπ equals the un-processed input data. As shown in Figures 11 a-h, 

the match between the DQO modelôs output results, ╠ , and the input data, ╠ , is gradually improving 

toward slower frequency components at decreasing Ὧ values.  

The normalized absolute error of the model fit for each time step over each sliding window ύ
ςσπτ is calculated as ὉὭ for Ὥ ρ to 327 ςψψ time step (327 days): 
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           (a)         (b) 

 
         (c)          (d) 

  
           (e)           (f) 

 
           (g)           (h) 

Figures 11 a-h. Variation of the ╠  and ╠ vectors with time for input data series from measurement; 

(a)-(g): Ὧᶰττȟυπ (with each individual ÐÁÉÒ ÁÎÄ Ὧ marked); (h): Ὧᶰσρȟτσ (with only each Ὧ 
marked as no difference I between ╠  and ╠  can be seen).     


