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1.0 Executive Summary

Prototype tests of new software tools of an Early Warning System (EWS) has been successfully
completed during the past four years. The EWS corfoeptreventive intervention of mining safety and
health incidentsvasincepted and first testad 20142015in a prior research project funded also by the
Alpha FoundationThe proofof-principle testat that timeused the native software tools iMentsim a
commercially available mine ventilation and contaminant transport model.

Themain goal of théollow-upwork wasto develop grototypeEWS safety systemand prove by tests
its performancausingAt mos pher i ¢ Mo ni dolectad regtim&dureng apensdionsl feom a
partner mines Thenew and innovative componerdEWSto be tested wergl) time expasioninto
the future from the redlme monitoring signals by forecasting in accelerated, simukdito@ from the
data to predict any likely event in the near future that may compromise safety; and (2)q@acson
from the AMS locations it the entire mine, in order to evaluate safety at any critical working area, even
at a place where no monitoring statiwareinstalled.

The spatial and temporal expansisagquirehigh-performance numerical simulati@f the mine site
reakttime, synchronizedvith the mining operationt® forecasin time andto expandn spacemodel data
to all locations of interesFor the tasks, &pursueda high-performance, Dynamic Mine Ventilation
Model (DMVM) using theMultiflux codewith advancd,timed e pendent @At her mal f |
capabilities Such dynamic model element is needed to analyze and fepnedtt fast changes in
temperature and contaminant concentrations.

A research partnershypas formedetweenUNR andVentsimHowden(previouslyVentsimChasn)
to pursue the development of EVE&d talink it to the most popular ventilation and contaminant modeling
tool, used by over a thousand mining companies. New software components were needed to improve
Ventsimd sative models for timelependent, dynamic simulations in accuracy and computational speed
for reattime analysis. These new modefsthe EWS wereéncluded in the DMVM linkedto Ventsind s
Graphical User Interface for model configuration setup.

On a paralletimeline, we also searched for applicatdelsfor EWSin Information Technology (IT),
usingd b i g Mddchihehe@arning (ML) Artificial intelligence (Al), and NeuralNetworks (NN) Various
Neural Network (NN) models were tested for signal trend analysis and forward prediction capabilities,
obtaining moderate results with limited time ga{bsas et al., 2021Dias, 202). A refocused study
experimenting with time series analysis and forward prediction resuliegbnovedAl modelsfor reat
time EWS applications [3A new, dynamic ML model was developed éog.,barometric pressusariven
methane liberation prediction from the gob andftieehly cutface of the longvall panel. The matrix
operator of thenodel is determined from reaine AMS data from a partner narby theautomaticML
process, wi t hout xwpermtorécan themhe ydssed td the DMYIE for forecasting
methane liberation and concentration variations at the face in future time triggered by present, or future,
forecasted barometric presswariationsSimilar to the dynamic methane liberation and concentration
example, the matrix operator modeling tool is applicable to analyze and predict other hazardous
atmospheric processes.

We received redime AMS data from two operating mines ftietresearch project: a few weeks of
temperature, humidifyand gas concentratisrdata froma metal mine in Nevadaand a 327day,
continuous data frora full, long-wall panel extractionvork from a coal mine in Australia. These data
sets allowed us to elmte the analytic and predictive capabilities of the EWS during normal mining
operations.



Comparisons between measured AMS di@ian normal mining operatiorend simulated results from
the DMVM model showed excellent agreements in test examn@adibration of the DMVM model inputs
were necessary when model inputs wera constrained sufficiently due to lack of prior ddbarect
matching of the AMS data sets from the mines wahousDMVM models showedthat the EWS can
assist in seftalibratng the DMVM modelAssisting in model input calibration by matching model output
with measured data &n intuitive process supported by the EWS metfiodvit, a rootcause analysis of
a signal deviation (i.edue tomodelboundary conditiorerror) fromexpected value (i.e., AMS data) is
analogous to sektalibration of the model for a specific input variable.

Synthetic hazard events were generatehually by perturbing the AMS signals for testing the
forward prediction capabilitie®f the EWS softwareWe demonstrated by a series of numerical
simulations that the DMVM and AVIL elements of EWS calfa) recognize hazardous atmospheric
conditions in their early evolution from AMS dat@) find likely root causes for the evern(t) fast
forward-predict forlikely outcomes of the roetause problemand(d) send a warningtriggeredsignal
for preventive intervention of an impending malfunction or accidEmé recognition of an upcoming
hazard in its progressidrom (a) through (dgarly on ighe basigo prevent an impending accident.

In the last year of the projeatje discoveredthat the i0otcause analysis and the subsequent fast
forward prediction ofan impendinghazardougproblemcan be fused into a single proce$he new,
integratedAl process is triggered nhyAMS si gnal 6s deviation from it
fastforward prediction of the AMS signal trend until it reaches arabses the hazard threshdda
promping a warning messagéheDMVM modelelementare needed only for decomposing the possible
input variablesguch ase.g.,theair flow rate, the methane concentration at the main gate, the barometric
pressure, and the reoause methane liberation flux rate from the face and the gob) affectitaygbted
output variablgsuch as, e.g., the output concentratiomethaneat the tail gate). After decomposition,
adirect evaluatiomf the unknown roetause of the methane liberation flux rate cadikectly evaluated
from theAMS signat by theML, andAl processesontinuously andeaktime.

In summary, he protype of the EWS software tools are completed and testedausorgbination of
DMVM, ML of the AMS signaland Al for triggering a warning message for acting with preventive
measures before the observed, critical AMS sigraf crossin accident threshold. The time gain depends
on the changing rate of the AMS signal. In a moderately fast, detiEmigp process with an evolution time
of several hours, the time gain mawi®ut arhour in some exampléBanko, 2021; Danko, 2022)Vhen
the convolutional time series model is used for the identification of the contaminant transport system of
the mine from AMS data, preventiorfocused engineering desigmay be used to achieve much larger
time gainof severahours by triggering the EWS praseby signals other than that of AMS, sucfras
weather forecagDanko, 2022)

The results of the EWS project has been published (Dias et al., 2021; Danko, 2021; Danko, 2022),
showing an overwhelming advantage of analyzing AMS data continuouslgardne, to foresee safety
and health hazards in their evolution for preventive interventions. The prototype tests were completed
with the cooperation dfentsimdevelopers. Howdevientsimis attentivein testingthe EWS in operating
mines and marketing if interest fromthe mining industrpr health and safety organizations is presented.

2.0 Problem Statement and Objective

The overall goabf the research project is to develop and test a prototype sotifavéSfor accident
prevention by analyzing he mi neds physi cal a t nfocespdhemgineeting s y s |
design as well aseattime AMS datausingnumerical simulationML and Al, followed byforecasing
likely future outcomes of critical atmospheric conditions to safety and h&akhnputoutput functional
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components of EWS are linked to the GUI elementgesitsimfor easy setup of the configuratibg the
user

Two compementary but equally recommended typeBWS applicationsvere defined during project
executionfor mine safety and health improvements by preventive intervention measures

(Typel). Unexpected,gattime, preventive EWS intervention by the recognition of an acciolemte
or healthhazardprone atmospheric event, triggered by the analysis of the AMS signals;

(Type 9. Anticipated, modepreventedEWS intervention for any potential, accidgmbne or health
hazardprone atmospheric condition, determined grgventionfocused engineering desigtriggered
reat i me by the analysis of a di st ur bifrongpthes signat a | ,
(for example, weather forecast data).

Tasks in eitherType 1) or (Type?2) rely on the same EWS model and software tools. The input data
handling to trigger the EWS is different ifype 1) and Type2), requiring reatime AMS datehandling
in (Type 1), whereas a preparatory design analysis of the atmospheric system processes of the mine is
needed for the task infype 2), in addition to reatime analysis of a mindisturbing signal that may
originate from data outsid# the AMS of the mine (e.g., area weather data)

The specific goalsf the development of the prototype EWS are to:

1 Prove reliability of the experimental prototype EWS system using the AMS signals from
commercial, approved monitoring sensors;

T Show the reliability ad the seHcalibration ability of the information system of the mine
ventilation and contaminant concentration dynamic model including the DMVM component under
operating conditions

1 Test the capability of fast forward prediction component in DMVM at ang triggered by any
outside event or a request from the user to check for future threshold crossing within the EWS;

T Quantify the time advance for supporting intervention measures before the accident would have
happened in emulated, whétscenarios usig off-line computer simulations for hypothetical,
perceived, and relevant accident scenarios

1 Support mine management with output of fi@mle distress signal and accidgmbne case
definition for preventive intervention if imminent danger is recognipedrine safety;

T Provide a periodic summary chronicle or fBale report for safety factor variations with time at
critical locations for health conditions;

1 Provide a periodic summary chronicle or rgale report for underor overventilation for
suppating OVC and VOD control decisions.

3.0 Research Approach:

The study design include A tasksspread over the extended, four years of research pdrd
Atmospheric Monitoring System (AMS) layout of the mine is mappéademsimControl in the GUI for
connecting the sensor ds | oTheunekpeaeqdType @)EWShtasksaleMV M
best supported by the currevientsim Control softwarg whereas bottventsim Control andVentsim
Design are needed to worktime anticipated (Type BWS tasks

The prototypeEWS software is developed to analyze continuously real mine data in metal and coal
mines. The EWS software uses the kRugnformanceMultiflux solverfor the DMVM model element®or
matching mine data and predicting futusgnulated outcomes. The DMVM is desigd with the
cooperation of the Ventsim software development team under a partnership agreemerk with
VentsimVisual using its Graphical User Interface (GUI).
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Continuous developments in thentsimDesignsoftware has improved the native solversdaoth
in accuracy and speeMlost of the additional functions needed in the EWS are currently supported by
Ventsim Design, except for the enhancements included in the EWS such as the DMVM and the Al model
componentsThe DMVM model elements are stitlealed for the shortime dynamic simulationsfor
example, for diurnal temperature and concentration variation predictiéims. preventionfocused
engineering desigm Type 2 applications the EWS usesa convolutional time serieIL-Al model for
the identifcation of the contaminant transport system of the mine feaktime AMS data imported for
from the database &fentsimControl.

The calibratedDMVM model extend the EWS applicability to the entire mine airway system by
creating DMVM simulation data for mine areas where AMS data are not available. Feomtioaitored
areas, the EW8sesthe realtime DMVM model output data for safety and health analysis in the same
manner the EWS is used in the monitored locations.

The primary function of EWS is to support preventive safety and health management. The additional
benefits of EWS is cost savings in ventilation design and control. TheiEWS8Il suited to be part of
Ventsim Control forcontinuously analyze the AMS data stream and enhance it using the-basdd|
forwardin-time output information to evaluate heaéifiecting atmospheric conditions at any critical
location and time in a mine.

EWS is aimed at providing pport data to safety and health management to operate a mine according
to Optimized Ventilation Control (OVC) by optimizing safety, health, and cost benefits if desegart
of VentsimControl In addition, a mine may use the output data from the EBASentilation on Demand
(VOD) control if desired, always keeping the operation safe and economical at any location aalddime
a task delegated to the basic functiovehtsimControl

Task 1.Complete the EWS Framework.

The work continued for theeyears on Task, Hescribed in detail in interim reports and summarized
in Appendix 1.

a. GUI elements of the EWS

The GUI elements of the EWS linkedentsimDesign and/entsimControlare listed and
shown in Figure 1.

The planning was completed for the functions of each EWS element and GUI component in
preparation for the erite discussion with théentsimDevelopers for EWS integration in parts A
through F as follows. (Note the modification of Figure 1 from thate2®l19 Annual Report by the
addition of Ventsim Design and the removaMaintsimLive after the onsite work with théentsim
Developers.)
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Figure 1. The description of the GUI elements of the EWS linkg@ttsimDesign and/entsimControl.
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b. Data andHardware configuration of the EWS

The design layout of the EWebasicdata flow anchardware componengeshown in Figure 2
c. AMS network mapping to EWS

The conceptual data flow configuration of the EWShown in Figure 3.
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Figure 2. The desigilayout of the EWS with its basaata flow anchardware components

Task 2.The DMVM software in MULTIFLUX (MF).

The work continued for four years on Task 2 with developments anddestsibed in detail in interim
reports and summarized Appendix 1.

a. Dynamic model elements and configurations for air flow, heat, moisture, and contaminant
concentration

The DMVM model in MF, its link td/entsimDesign, and comparisons are published in eqeoess
journal article (Danko et. al, 2020). Recent DMVM improvements are explained in Appendix 1. The
DMVM model linkage and calibration against AMS data streams are shown in Appendix 2. The results
of a comp@rison example between the DMVM model arehtsimsimulation is shown with excellent
match in Appendix 3.

b. The gob model

Examples of model testsere carried out for methane concentration simulations in various stages
during mining operation in the entileng wall panel.Figure 4 shows the layout geometry of the full
gob at day 327 othe completedmining operation.
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Task 3.The DMVM Model Calibrator.

The work continued between years 2 and 3 on Taskdeswibed in detail in interim reports and
summarized in Appendix 1.

a. DMVM model calibration processeExamples of model calibration

Automatic, seHcalibration processewere developed and testedd&@ on matching AMS data trends
with DMVM model predictionsFigures 57 show DMVM selcalibration tests examples at various
1 TAAOEITO AO OEA 11T OET ¢ OEA OEAAOAOGO CAOA AT A
the root cause of methane concentration variations at various points in the longwall paneielated
to Figures 57 in terms of methane mass fluxes in the upstream airflow segments.
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Task 4.Safety awarenessignal processor.

Signal pattern recognition methddvelopmentsvith ML, Al, and NN models continued between
years 2 and 4 on Task 4 psblished (Dias, 2021, Dias et. al, 2021) aeported in the interim reports
with results an@¢onclusionsThedevelopments and tesise summarized in Appendix 1.

a. AMS signal pattens recognition

Signal pattern recognition methods welenmed developedind testedh examplsusing saved, real
time data for 327 days from AMS of an operatoogl mine in AustraliaThe narxnetype NN was used
in thefirst tests.The input data from AMS were flow rate, barometric pressure, and methane concentration
at the MG location. The model target was the methane concentration variation at the TG &ication
future time as a function of the input data variations over a ipastintervalof 50 daysFor NN model
training, a sliding windowtype progression was usddata from 1 to 50 time steps wansed to learn
methane concentration at the TG one time step (one day) fbeathe input variationg=igure8 shows
the comparison of the predicted and the measured methane concentrations ostatir&y @vindow
predictions As depicted, the ongay forward predictio from the NN model fails to followvell the
measured concentration variation. Instead oédasting with time gaifeven foronly one day), dime
delay is seen of several daysthe predicted concentratioand nearly all concentration spikes were
missed by the NN model.

The NNnarxnet modek were further studied analyzingAMS datafrom a metal mine in Nevada
A few weeks ofecorded, reattime AMS datavereused to train over 8000 minutes temperature
samples to predict the temperatures during the following 2000 time steps. Examples are shown
for training and prediction performances in Figures9 and 10 for two different sensor locations,
depicting poor forecasting performance.

Several other types of NN models were tested over three years with various results, but none
significantly favorable for EWS application, published in an international confereng®ias et al.,
2021)and in an M.S. thesifDias, 2021).

FORECAST FOR SIMULATED METHANE CONCENTRATION AT SHEARER TG POINT
1 r T T ; ;

predictions
Target to compare | 7|

0.9

1] 50 100 150 200 250 300
Time(days)

Figure 8 Comparison of measured and predicted concentrations from a NN model.
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b. Analysis of AMS trends.
To surpass the failed NN models, new methods were considered, designed, developed, and tested fo
reaktime EWS applications over the years 2 through 4.

A new dynamic model identification method was developed for continuous time series analysis and
forward prediction applications. Quantum of data was defined over moving time intervals in sliding
window coordinates for compressing the size of stored datea wtaining the resolution of information.
Quantum vectors formed the basis of a linear space for defining a dynamic quantum operator (DQO)
model of the system defined by its data stream. The transport of the quantum of compressed data was
modeled betweaethe time interval bins during the movement of the sliding time window. The DQO model
was identified from the samples of the reale flow of AMS data over the sliding time window. A least
squarefit identification method was developed for evaluating plaeameters of the quantum operator
model, utilizing the repeated use of the sampled data through a number of time steps. The method was
tested to analyze, and forwapdedict air temperature variations accessed from weather data as well as
methane concerdtion variations obtained from measurements of an opexaaigiinein Australia The
results showd efficient forward prediction capabilities, surpassing those using neural network and other
methods for the same task.

Only a few examples are selectedthe reportfrom the full, operaccess publication of the DQO
model (Danko, 2021) for illustrative purpos&emperature datr 327 daysveresampled at regular5
minute time interval$or quantumprocessig described in the referenced publicatfona model fitting
and prediction exercise. At each of ‘C pto 327 ¢ Y time steps, a separate DQO models built
using four days with sliding window widtd, ¢ ¢ "' ¢ o Tas se”Y The goals of the exerciseere
to check the quality of (a) the DQO model fit for each time step, measured by the normalized absolute
error between input data and model prediction at each time step; and (b) the DQO forward prediction steps
of @ 12 steps ahead at each time step, nredsy the normalized absolute error between the known
(but yet unused) input data’C & and the model forward predictionC & time step. The sliding time
window wasmoved from ¢ p, starting from an initial assumption of all zero history quantulmes
The DQO modelvas trained to match the last 20 quantum components on'O" o v~ as just a
short memory of the systewes needed to learn foror 12-step forward prediction.

After the 400 coefficients of t+ matrix of the DQO modeleredetermined frona leastsquare
fit (LSQ) schemeat eaclQime step(where'™™ “Y and"Yis the set of a sufficiently large data set for a unique
LSQ solution) the model predictior |t , was calculated from the quantupnocessed input da |k
taken at bacishifted time instants as:

ok W
The variation of themeasured dat|- and modeled|- quantum vector components for {Qv
o fv tcomponents for the last moving window segment®™ “Yare shown in Figure$l a-h. The
components of thilE and |k vectors with time are shown in (&) for Qv t v T (With each
individual D A & D®marked); and in (h) fcQ¥ o bt o (with only eactQmarked as no differee
betweer| and|F can be seen). Note that Figur2 a shows the DQO model match to thenBute
data as the quantum vector Q v Tequals the wprocessed input data.sfshown in Figuresl a-h,

the match between the [f)@f@ theniopdteddt|: sis gradually improving s u | t
toward slower frequency components at decree Gvaues.

The normalized absolute error of the model fit for each time step over each sliding "0'~"ow
¢ o migcalculated aC " )for 'C pto 327 ¢ Y tme step (327 days):
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