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1.0 Executive Summary  

Prototype tests of new software tools of an Early Warning System (EWS) has been successfully 

completed during the past four years. The EWS concept for preventive intervention of mining safety and 

health incidents was incepted and first tested in 2014-2015 in a prior research project funded also by the 

Alpha Foundation. The proof-of-principle test at that time used the native software tools in Ventsim, a 

commercially available mine ventilation and contaminant transport model.  

The main goal of the follow-up work was to develop a prototype EWS safety system and prove by tests 

its performance using Atmospheric Monitoring System’ data collected real-time during operations from 

partner mines. The new and innovative components of EWS to be tested were: (1) time  expansion into 

the future from the real-time monitoring signals by forecasting in accelerated, simulation-time from the 

data to predict any likely event in the near future that may compromise safety; and (2) space expansion 

from the AMS locations into the entire mine, in order to evaluate safety at any critical working area, even 

at a place where no monitoring station were installed.  

The spatial and temporal expansions require high-performance numerical simulation of the mine site 

real-time, synchronized with the mining operations to forecast in time and to expand in space model data 

to all locations of interest. For the tasks, we pursued a high-performance, Dynamic Mine Ventilation 

Model (DMVM) using the Multiflux code with advanced, time-dependent “thermal flywheel” simulation 

capabilities. Such dynamic model element is needed to analyze and forward-predict fast changes in 

temperature and contaminant concentrations.  

A research partnership was formed between UNR and Ventsim Howden (previously Ventsim Chasm) 

to pursue the development of EWS and to link it to the most popular ventilation and contaminant modeling 

tool, used by over a thousand mining companies. New software components were needed to improve 

Ventsim’s native models for time-dependent, dynamic simulations in accuracy and computational speed 

for real-time analysis. These new models of the EWS were included in the DMVM, linked to Ventsim’s 

Graphical User Interface for model configuration setup.  

On a parallel timeline, we also searched for applicable tools for EWS in Information Technology (IT), 

using ‘big data’, Machine Learning (ML), Artificial intelligence (AI), and Neural Networks (NN). Various 

Neural Network (NN) models were tested for signal trend analysis and forward prediction capabilities, 

obtaining moderate results with limited time gains (Dias et al., 2021; Dias, 2021). A refocused study 

experimenting with time series analysis and forward prediction resulted in improved AI models for real-

time EWS applications [3]. A new, dynamic ML model was developed for e.g., barometric pressure-driven 

methane liberation prediction from the gob and the freshly cut face of the long-wall panel. The matrix 

operator of the model is determined from real-time AMS data from a partner mine by the automatic ML 

process, without user’s input. The matrix operator can then be passed to the DMVM for forecasting 

methane liberation and concentration variations at the face in future time triggered by present, or future, 

forecasted barometric pressure variations. Similar to the dynamic methane liberation and concentration 

example, the matrix operator modeling tool is applicable to analyze and predict other hazardous 

atmospheric processes.  

We received real-time AMS data from two operating mines for the research project: a few weeks of 

temperature, humidity, and gas concentrations data from a metal mine in Nevada; and a 327-day, 

continuous data from a full, long-wall panel extraction work from a coal mine in Australia. These data 

sets allowed us to evaluate the analytic and predictive capabilities of the EWS during normal mining 

operations.  
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Comparisons between measured AMS data from normal mining operations and simulated results from 

the DMVM model showed excellent agreements in test examples. Calibration of the DMVM model inputs  

were necessary when model inputs were not constrained sufficiently due to lack of prior data. Direct 

matching of the AMS data sets from the mines with various DMVM models showed that the EWS can 

assist in self-calibrating the DMVM model. Assisting in model input calibration by matching model output 

with measured data is an intuitive process supported by the EWS method. To wit, a root-cause analysis of 

a signal deviation (i.e., due to model boundary condition error) from expected value (i.e., AMS data) is 

analogous to self-calibration of the model for a specific input variable. 

 Synthetic hazard events were generated manually by perturbing the AMS signals for testing the 

forward prediction capabilities of the EWS software. We demonstrated by a series of numerical 

simulations that the DMVM and AI-ML elements of EWS can (a) recognize hazardous atmospheric 

conditions in their early evolution from AMS data; (b) find likely root causes for the event; (c) fast-

forward-predict for likely outcomes of the root-cause problem; and (d) send a warning, triggered signal 

for preventive intervention of an impending malfunction or accident. The recognition of an upcoming 

hazard in its progression from (a) through (d) early on is the basis to prevent an impending accident. 

In the last year of the project, we discovered that the root-cause analysis and the subsequent fast-

forward prediction of an impending hazardous problem can be fused into a single process. The new, 

integrated AI process is triggered by any AMS signal’s deviation from its normal range, followed by a 

fast-forward prediction of the AMS signal trend until it reaches and crosses the hazard threshold for 

prompting a warning message. The DMVM model elements are needed only for decomposing the possible 

input variables (such as, e.g., the air flow rate, the methane concentration at the main gate,  the barometric 

pressure, and the root-cause methane liberation flux rate from the face and the gob) affecting the targeted 

output variable (such as, e.g., the output concentration of methane at the tail gate). After decomposition, 

a direct evaluation of the unknown root-cause of the methane liberation flux rate can be directly evaluated 

from the AMS signals by the ML, and AI processes continuously and real-time.  

In summary, the protype of the EWS software tools are completed and tested using a combination of 

DMVM, ML of the AMS signal and AI for triggering a warning message for acting with preventive 

measures before the observed, critical AMS signal may cross an accident threshold. The time gain depends 

on the changing rate of the AMS signal. In a moderately fast, deteriorating process with an evolution time 

of several hours, the time gain maybe about an hour in some examples (Danko, 2021; Danko, 2022). When 

the convolutional time series model is used for the identification of the contaminant transport system of 

the mine from AMS data, a prevention-focused engineering design may be used to achieve much larger 

time gains of several hours by triggering the EWS process by signals other than that of AMS, such as from 

weather forecast (Danko, 2022).  

The results of the EWS  project has been published (Dias et al., 2021; Danko, 2021; Danko, 2022), 

showing an overwhelming advantage of analyzing AMS data continuously and real time, to foresee safety 

and health hazards in their evolution for preventive interventions. The prototype tests were completed 

with the cooperation of Ventsim developers. Howden Ventsim is attentive in testing the EWS in operating 

mines and marketing it if interest from the mining industry or health and safety organizations is presented. 

2.0 Problem Statement and Objective   

The overall goal of the research project is to develop and test a prototype software of EWS for accident 

prevention by analyzing the mine’s physical atmospheric system by preventive-focused engineering 

design as well as real-time AMS data using numerical simulation, ML and AI, followed by forecasting 

likely future outcomes of critical atmospheric conditions to safety and health. The input-output functional 
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components of EWS are linked to the GUI elements of Ventsim for easy setup of the configuration by the 

user.  

Two complementary but equally recommended types of EWS applications were defined during project 

execution for mine safety and health improvements by preventive intervention measures:  

(Type 1). Unexpected, real-time, preventive EWS intervention by the recognition of an accident-prone 

or health-hazard-prone atmospheric event, triggered by the analysis of the AMS signals;   

(Type 2). Anticipated, model-prevented EWS intervention for any potential, accident-prone or health-

hazard-prone atmospheric condition, determined by prevention-focused engineering design, triggered 

real-time by the analysis of a disturbing signal, either coming from the mine’s AMS or from other signal 

(for example, weather forecast data).  

 Tasks in either (Type 1) or (Type 2) rely on the same EWS model and software tools. The input data 

handling to trigger the EWS is different in (Type 1) and (Type 2), requiring real-time AMS data handling 

in (Type 1), whereas a preparatory design analysis of the atmospheric system processes of the mine is 

needed for the task in (Type 2), in addition to real-time analysis of a mine-disturbing signal that may 

originate from data outside of the AMS of the mine (e.g., area weather data).   

The specific goals of the development of the prototype EWS are to:  

• Prove reliability of the experimental prototype EWS system using the AMS signals from 

commercial, approved monitoring sensors; 

• Show the reliability and the self-calibration ability of the information system of the mine 

ventilation and contaminant concentration dynamic model including the DMVM component under 

operating conditions; 

• Test the capability of fast forward prediction component in DMVM at any time triggered by any 

outside event or a request from the user to check for future threshold crossing within the EWS;  

• Quantify the time advance for supporting intervention measures before the accident would have 

happened in emulated, what-if scenarios using off-line computer simulations for hypothetical, 

perceived, and relevant accident scenarios; 

• Support mine management with output of real-time distress signal and accident-prone case 

definition for preventive intervention if imminent danger is recognized for mine safety;  

• Provide a periodic summary chronicle or real-time report for safety factor variations with time at 

critical locations for health conditions;  

• Provide a periodic summary chronicle or real-time report for under- or over-ventilation for 

supporting OVC and VOD control decisions. 

 

3.0 Research Approach:   

The study design include 10 tasks spread over the extended, four years of research period. The 

Atmospheric Monitoring System (AMS) layout of the mine is mapped in Ventsim Control in the GUI for 

connecting the sensor’s locations to the DMVM for the mines. The unexpected (Type 1) EWS tasks are 

best supported by the current Ventsim Control software, whereas both Ventsim Control and Ventsim 

Design are needed to work in the anticipated (Type 2) EWS tasks.  

 The prototype EWS software is developed to analyze continuously real mine data in metal and coal 

mines. The EWS software uses the high-performance Multiflux solver for the DMVM model elements for 

matching mine data and predicting future simulated outcomes. The DMVM is designed with the 

cooperation of the Ventsim software development team under a partnership agreement to work with 

Ventsim Visual using its Graphical User Interface (GUI).  



 
 

4 
 

Continuous developments in the Ventsim Design software has improved the native solver tools both 

in accuracy and speed. Most of the additional functions needed in the EWS are currently supported by 

Ventsim Design, except for the enhancements included in the EWS such as the DMVM and the AI model 

components. The DMVM model elements are still needed for the short-time dynamic simulations, for 

example, for diurnal temperature and concentration variation predictions. For prevention-focused 

engineering design in Type 2 applications, the EWS uses a convolutional time series ML-AI model for 

the identification of the contaminant transport system of the mine from real-time AMS data, imported for 

from the database of Ventsim Control. 

 The calibrated DMVM model extends the EWS applicability to the entire mine airway system by 

creating DMVM simulation data for mine areas where AMS data are not available. For the unmonitored 

areas, the EWS uses the real-time DMVM model output data for safety and health analysis in the same 

manner the EWS is used in the monitored locations. 

 The primary function of EWS is to support preventive safety and health management. The additional 

benefits of EWS is cost savings in ventilation design and control. The EWS is well suited to be part of 

Ventsim Control for continuously analyze the AMS data stream and enhance it using the model-based, 

forward-in-time output information to evaluate health-effecting atmospheric conditions at any critical 

location and time in a mine.  

 EWS is aimed at providing support data to safety and health management to operate a mine according 

to Optimized Ventilation Control (OVC) by optimizing safety, health, and cost benefits if desired, now part 

of Ventsim Control. In addition, a mine may use the output data from the EWS for Ventilation on Demand 

(VOD) control if desired, always keeping the operation safe and economical at any location and time, also 

a task delegated to the basic function of Ventsim Control.  

Task 1. Complete the EWS Framework.  

The work continued for three years on Task 1, described in detail in interim reports and summarized  

in Appendix 1.   

a. GUI elements of the EWS  

The GUI elements of the EWS linked to Ventsim Design and Ventsim Control are listed and 
shown in Figure 1.  

The planning was completed for the functions of each EWS element and GUI component in 

preparation for the on-site discussion with the Ventsim Developers for EWS integration in parts A 

through F as follows. (Note the modification of Figure 1 from that in the 2019 Annual Report by the 

addition of Ventsim Design and the removal of Ventsim Live after the onsite work with the Ventsim 

Developers.)  
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Figure 1. The description of the GUI elements of the EWS linked to Ventsim Design and Ventsim Control. 

 

b. Data and Hardware configuration of the EWS 

The design layout of the EWS, the basic data flow and hardware components are shown in Figure 2.  

c. AMS network mapping to EWS.  

The conceptual data flow configuration of the EWS is shown in Figure 3. 
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Figure 2. The design layout of the EWS with its basic data flow and hardware components. 
 

Task 2. The DMVM software in MULTIFLUX (MF). 

The work continued for four years on Task 2 with developments and tests, described in detail in interim 

reports and summarized in Appendix 1.   

a. Dynamic model elements and configurations for air flow, heat, moisture, and contaminant 

concentration.  

The DMVM model in MF, its link to Ventsim Design, and comparisons are published in open-access 

journal article (Danko et. al, 2020). Recent DMVM improvements are explained in Appendix 1. The 

DMVM model linkage and calibration against AMS data streams are shown in Appendix 2. The results 

of a comparison example between the DMVM model and Ventsim simulation is shown with excellent 

match in Appendix 3. 

b. The gob model.  

Examples of model tests were carried out for methane concentration simulations in various stages 

during mining operation in the entire long wall panel.  Figure 4 shows the layout geometry of the full 
gob at day 327 of the completed mining operation. 
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Figure 3. The conceptual data flow configuration of the EWS. 

 

Task 3. The DMVM Model Calibrator.  

The work continued between years 2 and 3 on Task 3 as described in detail in interim reports and 

summarized in Appendix 1.   

a. DMVM model calibration processes. Examples of model calibration. 

Automatic, self-calibration processes were developed and tested based on matching AMS data trends 

with DMVM model predictions. Figures 5-7 show DMVM self-calibration tests examples at various 
locations at the moving the shearer’s gate and in the gob. Figure 8 shows the evaluation results of 
the root cause of methane concentration variations at various points in the longwall panel, related 
to Figures 5-7 in terms of methane mass fluxes in the upstream airflow segments.  
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Figure 4. A longwall panel of a coal mine partner’s mine discretized for gob modeling (309.7m x 
3,822m, with 7 x 327 internal grid lines) in the DMVM model in Ventsim. 
 

                           
Figure 5. Self-calibrated, simulated, and measured Methane concentrations at the Main Gate (MG) 

location in the longwall panel (the shearer location moves over 1 through 3,687 m in 327 days). 
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Figure 6. Self-calibrated, simulated, and measured Methane concentrations at the Tail Gate (TG) 

location in the longwall panel (the shearer location moves over 1 through 3,687 m in 327 days). 

 

 

Figure 7. Self-calibrated, simulated, and measured Methane concentrations at a gob location close to the 

longwall panel exit end (the shearer location moves over 1 through 3,687 m in 327 days). 

(MG , TG, and Panel Exit locations)  
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Task 4. Safety awareness signal processor.  

 Signal pattern recognition method developments with ML, AI, and NN models continued between 

years 2 and 4 on Task 4 as published (Dias, 2021, Dias et. al, 2021) and reported in the interim reports 

with results and conclusions. The developments and tests are summarized in Appendix 1.   

a. AMS signal patterns recognition.  

Signal pattern recognition methods were planned, developed and tested in examples using saved, real-

time data for 327 days from AMS of an operating coal mine in Australia. The narxnet-type NN was used 

in the first tests. The input data from AMS were flow rate, barometric pressure, and methane concentration 

at the MG location. The model target was the methane concentration variation at the TG location at a 

future time as a function of the input data variations over a past time interval of 50 days. For NN model 

training, a sliding window-type progression was used. Data from 1 to 50 time steps were used to learn 

methane concentration at the TG one time step (one day) ahead from the input variations. Figure 8 shows 

the comparison of the predicted and the measured methane concentrations over 270 sliding window 

predictions. As depicted, the one-day forward prediction from the NN model fails to follow well the 

measured concentration variation. Instead of forecasting with time gain (even for only one day), a time 

delay is seen of several days in the predicted concentration; and nearly all concentration spikes were 

missed by the NN model.    

 The NN narxnet models were further studied analyzing AMS data from a metal mine in Nevada. 
A few weeks of recorded, real-time AMS data were used to train over 8000 minutes temperature 
samples to predict the temperatures during the following 2000 time steps. Examples are shown 
for training and prediction performances in Figures 9 and 10 for two different sensor locations, 
depicting poor forecasting performance. 

 Several other types of NN models were tested over three years with various results, but none 
significantly favorable for EWS application, published in an international conference (Dias et al., 

2021) and in an M.S. thesis (Dias, 2021).   

           

Figure 8. Comparison of measured and predicted concentrations from a NN model. 
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Figure 9. NN model’s training and prediction for air temperature variations at sensor 1 location. 
 

 
 

Figure 10. NN model’s training and prediction for air temperature variations at sensor 2 location. 
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b. Analysis of AMS trends. 

To surpass the failed NN models, new methods were considered, designed, developed, and tested for 

real-time EWS applications over the years 2 through 4. 

A new dynamic model identification method was developed for continuous time series analysis and 

forward prediction applications. Quantum of data was defined over moving time intervals in sliding 

window coordinates for compressing the size of stored data while retaining the resolution of information. 

Quantum vectors formed the basis of a linear space for defining a dynamic quantum operator (DQO) 

model of the system defined by its data stream. The transport of the quantum of compressed data was 

modeled between the time interval bins during the movement of the sliding time window. The DQO model 

was identified from the samples of the real-time flow of AMS data over the sliding time window. A least-

square-fit identification method was developed for evaluating the parameters of the quantum operator 

model, utilizing the repeated use of the sampled data through a number of time steps. The method was 

tested to analyze, and forward-predict air temperature variations accessed from weather data as well as 

methane concentration variations obtained from measurements of an operating coal mine in Australia. The 

results showed efficient forward prediction capabilities, surpassing those using neural network and other 

methods for the same task.  

Only a few examples are selected in the report from the full, open-access publication of the DQO 

model (Danko, 2021) for illustrative purposes. Temperature data for 327 days were sampled at regular 5-

minute time intervals for quantum-processing described in the referenced publication for a model fitting 

and prediction exercise. At each of the 𝑖 = 1 to 327× 288 time steps, a separate DQO model was built 

using four days with sliding window width, 𝑤 = 8 × 288 = 2304 as set 𝑆. The goals of the exercise were 

to check the quality of (a) the DQO model fit for each time step, measured by the normalized absolute 

error between input data and model prediction at each time step; and (b) the DQO forward prediction steps 

of 𝑧 = 12 steps ahead at each time step, measured by the normalized absolute error between the known 

(but yet unused) input data at 𝑖 + 𝑧 and the model forward prediction at 𝑖 + 𝑧 time step. The sliding time 

window was moved from 𝑖 = 1, starting from an initial assumption of all zero history quantum values. 

The DQO model was trained to match the last 20 quantum components only (for 𝑘 ∈ [31,50]) as just a 

short memory of the system was needed to learn for a 𝑧 =12-step forward prediction.  

After the 400 coefficients of the 𝝓𝑆 matrix of the DQO model were determined from a least-square-

fit (LSQ) scheme at each 𝑖 time step (where 𝑖 ∈ 𝑆, and 𝑆 is the set of a sufficiently large data set for a unique 

LSQ solution), the model prediction, 𝑸𝑀
𝑖 , was calculated from the quantum-processed input data 𝑸𝐷

𝑖−𝑧 

taken at back-shifted time instants as: 

𝑸𝑀
𝑖 = 𝝓𝑖𝑸𝐷

𝑖−𝑧                            (1) 

The variation of the measured data 𝑸𝐷
𝑖  and modeled 𝑸𝑀

𝑖  quantum vector components for the 𝑘 ∈
[31,50] components for the last moving window segment for 𝑖 ∈ 𝑆 are shown in Figures 11 a-h. The 

components of the 𝑸𝑀
𝑖  and 𝑸𝐷

𝑖 vectors with time are shown in (a)-(g) for 𝑘 ∈ [44, 50]  (with each 

individual pair and 𝑘 marked); and in (h) for 𝑘 ∈ [31, 43] (with only each 𝑘 marked as no difference 

between 𝑸𝐷
𝑖  and 𝑸𝑀

𝑖  can be seen). Note that Figure 12 a shows the DQO model match to the 5-minute 

data as the quantum vector for 𝑘 = 50 equals the un-processed input data. As shown in Figures 11 a-h, 

the match between the DQO model’s output results, 𝑸𝑀
𝑖 , and the input data, 𝑸𝐷

𝑖 , is gradually improving 

toward slower frequency components at decreasing 𝑘 values.  

The normalized absolute error of the model fit for each time step over each sliding window 𝑤 =
2304 is calculated as 𝐸(𝑖) for 𝑖 = 1 to 327× 288 time step (327 days): 
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           (a)         (b) 

 
         (c)          (d) 

  
           (e)           (f) 

 
           (g)           (h) 

Figures 11 a-h. Variation of the 𝑸𝑀
𝑖  and 𝑸𝐷

𝑖 vectors with time for input data series from measurement; 

(a)-(g): 𝑘 ∈ [44, 50] (with each individual pair and 𝑘 marked); (h): 𝑘 ∈ [31, 43] (with only each 𝑘 

marked as no difference I between 𝑸𝐷
𝑖  and 𝑸𝑀

𝑖  can be seen).     
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𝐸(𝑖) =
𝑤(𝑸𝑀

𝑖 −𝑸𝐷
𝑖 )

∑ |𝑸𝐷
𝑖−𝑗+1

|
𝑗=𝑤
𝑗=1

100     [%]                       (2) 

      The normalized absolute error of the model fit at forward predicted instances by 𝑧 time steps for 

each time step over each sliding window 𝑤 = 2304 is calculated as 𝐸𝑧(𝑖): 

𝐸𝑧(𝑖) =
𝑤(𝑸𝑀

𝑖+𝑧−𝑸𝐷
𝑖+𝑧)

∑ |𝑸𝐷
𝑖−𝑗+𝑧−1

|
𝑗=𝑤
𝑗=1

100     [%]                              (3) 

The graphs of 𝐸(𝑖) and 𝐸𝑧(𝑖) are shown in Figures 12 a, b and 14 a, b for the temperature; and in 

Figures 16 a, b and 18 a, b for the methane concentration examples, respectively. 

 

 

  
(a)                                                                              (b) 

Figures 12 a, b. Variations of normalized absolute DQO model error; (a) Model error over the training 

time window, 𝐸(𝑖); and (b) Histogram of the model error. 

The forward-predicting capability of the DQO model was tested by evaluating forecasted outputs from 

previous known values. This was accomplished by calculating the model’s output ahead by 𝑧 = 12 time 

steps outside the training time window, while using a 12-step old DQO: 

 𝑸𝑀
𝑖+𝑧 = 𝝓𝑖𝑸𝐷

𝑖                                                      (4) 

Figures 13 a, b show the variation of selected 𝑸𝑀
𝑖+𝑧  and 𝑸𝐷

𝑖+𝑧vectors over the entire last training 

window forward predicted by 𝑧 time steps, compared with input data series from measurement. The 

components of the 𝑸𝑀
𝑖+𝑧 and 𝑸𝐷

𝑖+𝑧vectors with time are shown in (a) for 𝑘 = 50 (with marked pairs of 

𝑸𝐷
𝑖+𝑧 and 𝑸𝑀

𝑖+𝑧); and in (b) for 𝑘 ∈ [31, 44] (with only each 𝑘 marked as no difference between model and 

data can be seen). As shown in Figures 13 a and b, the match between the DQO model’s output results, 

𝑸𝑀
𝑖+𝑧, and the input data, 𝑸𝐷

𝑖+𝑧, is about as good as the match before, indicating that input data have a 

learnable trend that holds well for about an hour ahead.     

A comparison between Figures 12 and 14 indicates a steady error performance in forward prediction 

application relative to that in model identification. A stable DQO model performance up to 12 forward-

step forecast in the example makes the method appealing, especially in comparison to published results 

for LSTM NN models with poorer forward prediction performance (Dias et al., 2021).  
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(a)                                                                              (b) 

Figures 13 a, b. Variation of selected 𝑸𝑀
𝑖+𝑧 and 𝑸𝐷

𝑖+𝑧vectors forward predicted by 𝑧 =12 time steps, 

compared  with input data series from measurement; (a): 𝑘 = 50 (with marked pairs of 𝑸𝐷
𝑖+𝑧 and 𝑸𝑀

𝑖+𝑧); 

(b): 𝑘 ∈ [31, 44] (with only each 𝑘 marked as no difference between model and data can be seen).     

 

 The graphs of 𝐸(𝑖) and 𝐸𝑧(𝑖) for forward prediction are shown in Figure 15a and b, respectively. 

 

  
(a)                                                                              (b) 

Figures 14 a, b. Variations of normalized absolute DQO model error; (a) Model error at 12 time steps 

(60 minutes) forward, 𝐸𝑓𝑝𝑠(𝑖); and (b) ; and (b) Histogram of the model error. 

In the coal mine example, the second-sampled AMS data stream from the TG methane sensor was 

first resampled every 5 minutes by sliding window averaging every 300 consecutive data samples. The 

reduced data set included 288 data points each day for air flow rate, (𝑄𝑎), barometric pressure, (𝑃𝑏), and 

each gas concentration component from the mine, e.g., methane (CH4) at the MG, TG, gob, and near Panel 

Exit points.  

Each parameter was processed first into quantum vector, and then modeled continuously with DQO 

with time over 327 days. The Q vectors’ size was kept 50 in the examples. The variation of the measured 

data 𝑸𝐷
𝑖  and modeled 𝑸𝑀

𝑖  quantum vector components for the 𝑘 ∈ [31,50]  components for the last 

moving window segment for 𝑖 ∈ 𝑆  are shown in Figures 15 a-h.  Figures 16 a and b illustrate the  

normalized fitting error and its hysteresis curve between measured and modeled methane concentrations 

from the DQO model, repeated over 320 days (89,000 5-minute time steps).  
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              (a)         (b) 

 
            (c)          (d) 

  
              (e)           (f) 

 
              (g)           (h) 

Figures 15 a-h. Variation of the 𝑸𝑀
𝑖  and 𝑸𝐷

𝑖 vectors with time for methane source input data series from 

measurement; (a)-(g): 𝑘 ∈ [44, 50] (with each individual pair and 𝑘 marked); (h): 𝑘 ∈ [31, 43] (with 

only each 𝑘 marked as no difference between 𝑸𝐷
𝑖  and 𝑸𝑀

𝑖  could be seen).     
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(a)                                                                             (b) 

Figures 16 a, b. Variations of normalized absolute DQO model error for methane source; (a) Model error 

over the training time window, 𝐸(𝑖); and (b) Histogram of the model error. 

 

The forward prediction capability of the DQO model was tested similar to that of the temperature 

model. Figures 16 a-h show the variation of selected 𝑸𝑀
𝑖+𝑧 and 𝑸𝐷

𝑖+𝑧vectors forward predicted by 𝑧 =36 

time steps, compared with input data series from CH4 source measurement.  Figures 18 a and b illustrate 

the normalized fitting error and its hysteresis between measured and modeled methane concentrations 

from the DQO model, repeated over 320 days (89,000 5-minute time steps).  

 
(a)                                                                             (b) 

Figures 17 a, b. Variation of selected 𝑸𝑀
𝑖+𝑧  and 𝑸𝐷

𝑖+𝑧vectors forward predicted by 𝑧  =36 time steps, 

compared  with input data series from CH4 source measurement; (a): 𝑘 = 50 (with marked pairs of 𝑸𝐷
𝑖+𝑧 

and 𝑸𝑀
𝑖+𝑧); (b): 𝑘 ∈ [31, 44] (with only each 𝑘 marked as no difference between model and data can be 

seen).     
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(a)                                                                             (b) 

Figures 18 a, b. Variations of normalized absolute DQO model error for CH4; (a) Model error for 𝑧 =36 

time steps (180 minutes) forward prediction, 𝐸𝑧(𝑖); and (b) Histogram of the model error. 

Note that DQO model identification is based on self-correlating current and past data samples, 

therefore it inherently includes a single time step. Forward prediction from DQO thus comes naturally by 

increasing the number of time steps, 𝑧   (e.g., 𝑧 = 12  in the temperature and 𝑧 = 36  in the methane 

concentration example). As shown in illustrative examples published in detail (Danko, 2021) and 

summarized in Figures 11 through 18, the quality of DQO model identification performance is within 

about +/-60% normalized error for the temperature prediction (for 𝑧 = 12), and +/-100% normalized error 

for the methane prediction cases (for 𝑧 = 36). These error ranges mean that the predicted results are well 

bounded and can be reliably used for hazard warning, considering that a reduced EWS trigger level to half 

of the accepted safety value can easily compensate for a maximum of 100% prediction error. 

The successful tests of the DQO model in the EWS for up to 1 hour forward-step forecast for 

temperature forecast and 3 hours for methane forecast makes the method appealing, especially in 

comparison to published results for NN models with poorer forward prediction performance for only one 

forward step. In addition to excellent stability, the computational time for model DQO identification and 

forward prediction at each time step takes 18 milliseconds using a laptop computer. 

Task 5. The Root-Cause Evaluator in the EWS.  

Signal processing and root-cause evaluation of signal change studies continued between years 2 and 4 in 

Task 5 as reported in the interim reports with results and conclusions. The developments and tests are 

summarized in Appendix 1.   

a. Signal processing methods and root-cause evaluation of source terms in the DMVM for recognizing 

regular or hazardous patterns in the AMS signals. 

 Note that for normal mining operations, the AMS data based root-cause evaluation and automatic, 

self-calibration processes share the same mathematical techniques. DMVM self-calibration tests examples 

shown in Task 3 illustrate the success of the combined application AMS signal with the ventilation model 

in Figures 5-7 at various locations at the moving the shearer’s gate and in the gob.  

 Other results shown in Figures 1 and 13 for temperature and Figures 15 and 16 for methane 

concentration examples demonstrate the success of the DQO model to capture the dynamics of a set of 

data for a sizable time period from past to present time over a sliding window. This makes the DQO model 

a useful tool for root cause evaluation from real-time data. 
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 For heat or methane (or any other) inflow source identification, a DQO model can be directly identified 

from AMS data for the expressed source term, formulated in DMVM for the critical part of the mine 

ventilation section (Danko, 2021). The advantage of identifying a root-cause source term by a DQO model 

directly from AMS data comes from DQO’s ability for instantaneous forward prediction of expected 

future root-cause source term (heat and methane influx to the air in the examples). With the expected 

source term, the DMVM solution can instantly provide the expected future signal level (temperature and 

methane concentration in the examples).   

b. Root-Cause evaluation of model conditions and source terms in the DMVM for mine safety design.  

 Understanding the root cause of hazardous conditions in a mine requires deep familiarity with the 

controlling processes and circumstances. Atmospheric hazard analysis must start during mine ventilation 

design.  It is necessary to use physics-based operator (FBO) models to gain advanced insight into the 

Hazard System of the Mine (HSM) for hazard analysis as well as hazard-preventive ventilation design 

and operation. ML is helpful for identifying the numerical coefficients of FBO models to represent HSM.  

 A new approach is developed to identify FBO models for HSM from monitored data for atmospheric 

conditions from operating mine for 327 days under normal operating conditions, inspired by a previous 

study (Danko, 2006) for the subject ML for model identification, called the NTCF model technique. The 

nature of the methane mass influx due to pressure-driven, diffusive Darcy’s flow with time was studied 

using the NTCF model technique in a previous progress report, and published already from the current 

work (Danko, 2022). The monitored parameters in the current study were air flow rate in the face drift 

(𝑄𝑎), incoming methane (CH4) gas concentration at the MG (𝑐𝑀𝐺), exiting methane concentration at the 

TG (𝑐𝑇𝐺), and barometric pressure 𝑃𝑏, all sampled at 5-minute time intervals.  

 For physics-based, methane flux calculation as the root cause for atmospheric methane concentration, 

the following matrix equation is used:   

𝑄𝑀 = 𝑀𝑀 ∙ 𝐴 ∙ (𝑃st − �̂�) + 𝑄0,                          (5) 

where 𝑄𝑀 , 𝑀𝑀 , 𝐴 , 𝑃st − 𝑃 , and 𝑄𝑞0  are respectively the methane mass flux 𝑸-vector, [kg/s]; the 

admittance matrix of the methane transport’s operator, [kg/s/m2/Pa]; the surface area, [m2]; the pressure 

driving force 𝑸-vector [Pa] from monitored barometric pressure data at the working face; and the initial 

methane emission mass flux 𝑸-vector, 𝑄0 [kg/s], assumed to be kept at zero. The 𝑀𝑀 ∙ 𝐴 term may be 

considered a calibrated, but  an a priori PBO in (5). As shown in (5), the root cause methane influx, 𝑄𝑀, 

may be affected by the barometric pressure change in the ventilating air, �̂�.  

 Barometric pressure change may be caused by, for example, (1) fan malfunction, (2) roof collapse, (3) 

ventilation system control change such as fan speed change or air door closing or opening, (4) material 

haulage, (5) water or gas inburst from the strata, (5) sudden air temperature change, or (6) outside 

barometric pressure change such as during a passing weather front or storm. The identification of a PBO 

for the 𝑀𝑀 operator and its application is reported in detail in Task 6 b.   

Task 6. Fast-Forward Predictor for Hazard Evaluation.  

Fast-forward model predictor tests continued between years 2 and 4 based on both DMVM and AI 

models, described in detail in interim reports and summarized in Appendix 1.   

a. Fast-forward DMVM tests with the DQO model.  

The DQO model was applied for demonstrating a mine safety application. DQO models were 

identified from in situ AMS data obtained for 327 days under normal operating conditions for all relevant 
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atmospheric parameters to mine safety. These parameters were barometric pressure (Pb), air flow rate in 

the face drift (Qa), incoming methane gas concentration at the main gate (MG), exiting methane 

concentration at the tail gate (TG), and methane source (Qm) seepage into the mine workings from the 

face cut and the ground during mining.  

As no hazardous signal was ever detected during the 327 days of recorded mining operations, a 

synthetic data modification was introduced in day 300 by an added methane source (Qms) over the 

longwall face cut as a root cause for hazard. The goal was to forecast the effect of a triangular-shaped 

(linear increase, followed by a linear decline) Qms gas inburst over a 6-hour time period by the DQO 

model for preventive intervention before condition for a fatal explosive condition may happen. 

The DQO methane source model identification fitting and DQO forward prediction described in Task 

5 was tested over a sliding 3-day time period with changing 𝑡(𝑖end) end date. The results are shown in 

Figures 19 a, c, e, g, i, k (left sub-plots) for DQO model fit for part of a disturbed day; and in Figures 19 

b, d, f, h, j, l (right sub-plots) for 36-step forward prediction from the DQO model. The real-time 

component of the 𝑸 vector (k=50) results from DQO model fitting (left sub-plots) show a good trend 

recognition with somewhat early (leading) methane inflow recognition relative to the measured and 

processed 𝑸 data from AMS signal. The leading nature of the DQO model comes from differentiation 

originated from a single time step difference in the self-correlation fitting concept. The forward-prediction 

results by 36 time steps (right subplots) show an even stronger leading model trend versus 𝑸-processed 

AMS data, useful for forward prediction of the methane concentration from the future methane source, 

using the DMVM for concentration prediction without the need for further forwarding in time. 

The methane concentration forward prediction curves are depicted in Figure 20, back calculated by 

the DMVM from the forward predicted methane source model of DQO.  The results include three curves: 

a direct, methane concentration DQO model fit and prediction (with 1 forward time step for model 

identification) over the disturbed day (𝑸 Model for 𝑘=50); a 36-step methane (CH4) concentration forward 

prediction for a disturbed day (𝑸 Fwd Model for 𝑘=50) from the combined use of DQO and DMVM 

models; and the AMS input methane concentration data processed into a 𝑸 vector form. Two values are 

also shown: a 2% methane concentration threshold crossing point on the 𝑸 forward model curve (with 

‘o’) ; and the 2% methane concentration threshold crossing point on the input data curve (with ‘*’). An 

actual 28-step (140 minutes) forward prediction gain is seen from the DQO forward prediction model, a 

success for the test exercise to EWS application. 

Further test results are shown in Figures 21 a - g for various shapes and durations of synthetic input 

methane inburst source variations with time. The goal of these illustration examples is to show the 
sensitivity of matching the DQO model output with measured input data; and evaluate the actual 
forward-prediction time gain from the model simulation result of the 𝑸_Fwd model by comparison 
with  the measured input data. The number of forward time steps is reduced to 𝑧 =10 as a lowered 
expectation. The time-gain between the 𝑸_Fwd output and the measured data is always evaluated 
at the 2% CH4 concentration level in Figures 21 a - g. As shown, as the rise of the methane inburst 
becomes faster, the time gain is gradually reduced. For a step change rise, there can be no time gain, 
an understandable conclusion as the there is no time left for the model to respond before the 
threshold crossing is completed, shown in Figure 21 g. 

 

 



 
 

21 
 

            
   (a)                                                                                                              (b)

 
(c)                                                                                                              (d) 

  
                          (e)                                                                                                              (f) 

  
                 (g)                                                                                                              (h)                                                

  
               (i)                                                                                                              (j) 

   
               (k)                                                                                                              (l) 

Figures 19 a-l. Records of DQO methane source model identification fit and DQO forward prediction 

over a sliding 3-day time period with changing 𝑡(𝑖end) end date; (a,c,e,g,i,k): DQO model fit for part of 

a disturbed day; (b,d,f,h,j,l): 36-step forward prediction from the DQO model. 
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Figures 20. DQO model fit and a 36-step methane (CH4) concentration forward prediction for a 

disturbed day; an actual 28-step (140 minutes) forward prediction gain is shown from the DQO forward 

prediction model.   

 
Figure 21 a. Arch-shaped CH4 inburst input in 24 hrs (the expected forward prediction time of 10 

forward steps agrees with the simulated outcome result).  

 
Figure 21 b. Sinusoidal-shaped CH4 inburst input in 24 hrs (the expected forward prediction time of 10 

forward steps agrees with the simulated outcome result).  
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Figure 21 c. Cosine-shaped CH4 inburst input in 24 hrs (the expected forward prediction time of 10 

forward steps agrees with the simulated outcome result). 

 
Figure 21 d. Cosine-shaped CH4 inburst input in 12 hrs (the expected forward prediction time of 10 

forward steps agrees with the simulated outcome result). 

 

  
Figure 21 e. Left: cosine-shaped CH4 inburst input in 6 hrs (the expected forward prediction time of 10 

forward steps cannot be fulfilled); Right: zoom-in figure of the graph, showing that the Q model lags 

behind the measured data, whereas the Q_Fpd model starts up fast and soon leads the other curves.  



 
 

24 
 

 
Figure 21 f. Cosine-shaped CH4 inburst input in 6 hrs (the expected forward prediction time of 10 

forward steps cannot be fulfilled). 

 
Figure 21 g. Square-Shaped CH4 inburst input lasting for 12 hrs (the expected forward prediction time of 

10 forward steps cannot be fulfilled). 

b. FDO and DMVM tests for fast-forward predictions of possible methane incidents.  

The work continued in years 3 and 4 with developments and tests, published, and described in detail 

in interim reports and summarized in Appendix 1. 

The fastest forward prediction of a hazardous event may be achieved by running the pre-determined 

PBO model of the subject event. Once the first sign of the event’s trigger signal is recognized, the PBO 

can instantly inform the mine’s manager about the evolution of a hazardous episode moving toward an 

accident. A universal, ML method is developed and tested for determining PBO models of hazard-causing 

mining processes from AMS data during normal mining operations. Such PBO models can then be used 

for fast forward predicting hazardous outcomes if extreme triggering events are detected.  

Such extreme  triggering signals may come straight from AMS data or other sensors, e.g., from outside 

weather forecast. Triggering signals may be further enhanced by fast-forward DQO time-accelerator 

model elements. This way, the PBO models do not have to provide further time acceleration. 

A PBO processor was developed for obtaining a Functionalized Data Operator (FDO) model that was 

trained to approximate past and present, input-output data relations. The kernel function of the FDO model 

is the fundamental solution of a general PBO methane transport model. The FDO model was designed to 

predict future output features for deviated input vectors from any expected, feared of conceivable, future 
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input for early-warning hazard evaluation. The linearized FDO was designed to provide fast analytical, 

input-output solution in matrix equation form, described in detail in an open-access journal publication 

(Danko, 2022). Numerical verification exercises were completed for FDO model identification and hazard 

evaluation focused on methane inflow into the working face from the face and the gob in an underground 

coal mine.  

First, the𝑀𝑀  matrix of an FDO model was identified (further details are in Danko, 2022) from 

matching monitored methane mass influx data, �̂�𝑀, (as a root cause) into the longwall section between 

the MG and TG locations, as a function of the barometric pressure variation, �̂�:  

 �̂�𝑀 = 𝑀𝑀 ∙ 𝐴 ∙ (�̂�min − �̂�),                       (6) 

where �̂�min was selected as the minimum of the barometric pressure value for an initial time period at 

the first location of the longwall face cut. The FDO models were identified to match the monitored 

methane influx data from (6) in the following matrix-vector form: 

[
 
 
 
 
𝑄

𝑀1

𝑄
𝑀2

⋮
𝑄

𝑀𝑁
 ]
 
 
 
 

= 𝑀𝑀 [

(𝑃𝑚𝑖𝑛 −  𝑃1)
(𝑃𝑚𝑖𝑛 −  𝑃2)

⋮
(𝑃𝑚𝑖𝑛 −  𝑃𝑁)

],                       (7) 

where the 𝑸-vector elements 1…N in (7) covered a moving time window selected to be 10, 15, or 35 

days. The selection of the model size for matching the observed, short-term variations with time in the 

measured data of methane inflow followed the parsimony concept of Occam’s Razor (Danko, 2022). 

Reducing size 𝑁 of the 𝑀𝑀 matrix operator in an AI-based model relates to its complexity for 

grasping the underlying processes which control the outputs for given inputs. The concept of Occam’s 

Razor is the principle of parsimony with the minimization of 𝑁, a virtue worth considering for 

improving the model’s quality and providing solvability. 

Reducing the complexity of the model without reducing 𝑁 for gaining better predicting power also 

calls for Occam’s Razor. The model’s size, 𝑁, affects the grasp of the history effects and the delay 

mechanism of substance transport between cause and response. Once the FDO model is identified, 

simplification may be done by eliminating the history effect not from the model, but from the input data, 

equating the past variations with the most recent, measured value. This means a step-change input (as if 

the same input has persisted from time zero) for finding the response function from the FDO model at 

every fine time step. Such a model simplification may be executed by replacing 𝑀 with a diagonal 

matrix, 𝑀𝐷 as follows: 

 𝑀𝐷(𝑗, 𝑗) = {
∑ 𝑀𝑀(𝑗, 𝑖),        𝑗 ∈ [1, 𝑁],   𝑖

𝑗
𝑖=1 ∈ [1, 𝑗].

0                            𝑖 ≠ 𝑗                               
                          (8) 

Each 𝑀𝑀 matrix of the FDO models was determined over 90,000 steps, moving forward in 5-minute 

intervals (covering over 300 days of operation) continuously while training each FDO model for 10, 15 

and 35 days of sliding window time periods.  

Second, a DMVM equation was used to calculate the methane concentration at each time step at the 

TG location as follows:   

�̂�𝑇𝐺 = �̂�𝑀𝐺 + �̂�𝑀/�̂�𝑎,                 (9) 
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where �̂�𝑎, �̂�𝑇𝐺, and �̂�𝑀𝐺 are the monitored air flow rate, [kg/s]; monitored concentration at the tail 

gate [kg/kg]; and monitored concentration at the main gate [kg/kg]. 

Comparisons were made between the modeled and monitored methane concentrations at the TG 

location, after all repeatedly modeled and sampled variables were transformed into Q-vector forms in size 

of 𝑁 × 𝑛𝑇.  

For real-time data analysis and forecasting, the concept of Occam’s Razor was used, reducing the size 

of the matrix operator and the 𝑸-vectors, 𝑁, as well as reverting to a simplified model, converting the full 

matrix to diagonal elements. Experimentation was necessary to find the best combination of 𝑁 , 𝑛𝑇 

(history time span, that is, the sliding time window with 𝑁 divisions), and 𝑘 (number of repetitions of the 

the 𝑸-vectors at ∆𝑡 successions).  

Synthetic, extreme barometric pressure variation was created from the monitored �̂� data steam by 

superimposing two, negative, absolute barometric pressure spikes starting at the 40000 and 60000 time 

steps, shown in Figure 22 as positive difference steps of �̂�min − �̂� over all time steps. The absolute 

pressure spikes include 10 steps of linear descent by 5000 [Pa], 10 steps of the negative plateau, and 10 

steps of linear ascent to the undisturbed value, all shown as positive pressure difference changes. 

ORP1: Perturbed input pressure prediction using the first Occam’s Razor’s FDO model. 

The first FDO model used a reduced-size selection of 𝑁 = 10, 𝑛𝑇 = 10 days (2880 time steps); 𝑘=10 

days (2880 time steps) for Q-vectors processing; and FDO model identification for each 5-minute, real 

time instant over the allowable time period that stretches from day 10 (step 2880) to day (327-11) (approx. 

step 91000). Each of the approx. 87000 model was identified for analyzing of the sub-system around the 

subject time instant or forecasting its behavior in the immediate future before the next data and sub-model 

became available.  

The model prediction results are shown in Figure 23. The modeled methane flux variations over 300 

days are depicted (on the left) by three curves: (1) �̂�10(10, 𝑡𝑖), measured, unperturbed; (2) 𝑄10(10, 𝑡𝑖), 

perturbed, predicted by the full Q model; and (3) 𝑄10(10, 𝑡𝑖), from the QD model, (left). Figure 24 (on the 

right) shows enlargement for four days of curves (1)-(3). 

The model prediction result for the percentage of methane concentration using the subject FDO  with 

the hypothetical, synthetic, perturbed barometric pressure input is shown in Figure 24. The modeled 

methane concentration variations over 300 days are depicted (on the left) by three curves: (1) �̂�10(10, 𝑡𝑖), 

measured, unperturbed; (2) 𝑄10(10, 𝑡𝑖), perturbed, predicted by the full Q model; and (3) 𝑄10(10, 𝑡𝑖), 

from the QD model, (left). Figure 24 (on the right) shows enlargement for four days of curves (1)-(3). 

ORP2: Perturbed input pressure prediction using the second Occam’s Razor’s FDO model.  

The model prediction result for methane flux using the subject FDO with the hypothetical, synthetic, 

perturbed barometric pressure input is shown in Figure 25. The modeled methane flux variations over 300 

days are depicted (on the left) by three curves: (1) �̂�15(15, 𝑡𝑖), measured, unperturbed; (2) 𝑄15(15, 𝑡𝑖), 

perturbed, predicted by the full Q model; and (3) 𝑄15(15, 𝑡𝑖), from the QD model, (left). Figure 25 (on the 

right) shows enlargement for four days of curves (1)-(3). 

The model prediction result for the percentage of methane concentration using the subject FDO  with 

the hypothetical, synthetic, perturbed barometric pressure input is shown in Figure 26. The modeled 

methane concentration variations over 300 days are depicted (on the left) by three curves: (1) �̂�15(15, 𝑡𝑖), 
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measured, unperturbed; (2) 𝑄15(15, 𝑡𝑖), perturbed, predicted by the full Q model; and (3) 𝑄15(15, 𝑡𝑖), 

from the QD model, (left). Figure 26 (on the right) shows enlargement for four days of curves (1)-(3). 

ORP3: Perturbed input pressure prediction using the third, averaged-type Occam’s Razor’s FDO 

model with the 10×10 model size.   

The model prediction result for methane flux using the subject, averaged FDO with the hypothetical, 

synthetic, perturbed barometric pressure input is shown in Figure 27. The modeled methane flux variations 

over 300 days are depicted (on the left) by three curves: (1) �̂�10(10, 𝑡𝑖), measured, unperturbed; (2) 

𝑄10(10, 𝑡𝑖), perturbed, predicted by the averaged Q model; and (3) 𝑄10(10, 𝑡𝑖), from the QD model, (left). 

Figure 27 (on the right) shows enlargement for four days of curves (1)-(3). 

The model prediction result for the percentage of methane concentration using the subject, averaged 

FDO with the hypothetical, synthetic, perturbed barometric pressure input is shown in Figure 28. The 

modeled methane concentration variations over 300 days are depicted (on the left) by three curves: (1) 

�̂�10(10, 𝑡𝑖), measured, unperturbed; (2) 𝑄10(10, 𝑡𝑖), perturbed, predicted by the averaged Q model; and 

(3) 𝑄10(10, 𝑡𝑖), from the QD model, (left). Figure 28 (on the right) shows enlargement for four days of 

curves (1)-(3). 

ORP4: Perturbed input pressure prediction using the third, averaged-type Occam’s Razor’s FDO 

model with the 15×15 model size.   

The model prediction result for methane flux using the subject, averaged FDO with the hypothetical, 

synthetic, perturbed barometric pressure input is shown in Figure 29. The modeled methane flux variations 

over 300 days are depicted (on the left) by three curves: (1) �̂�15(15, 𝑡𝑖), measured, unperturbed; (2) 

𝑄15(15, 𝑡𝑖), perturbed, predicted by the averaged Q model; and (3) 𝑄15(15, 𝑡𝑖), from the QD model, (left). 

Figure 29 (on the right) shows enlargement for four days of curves (1)-(3). 

The model prediction result for the percentage of methane concentration using the subject, averaged 

FDO with the hypothetical, synthetic, perturbed barometric pressure input is shown in Figure 30. The 

modeled methane concentration variations over 300 days are depicted (on the left) by three curves: (1) 

�̂�15(15, 𝑡𝑖), measured, unperturbed; (2) 𝑄15(15, 𝑡𝑖), perturbed, predicted by the averaged Q model; and 

(3) 𝑄15(15, 𝑡𝑖), from the QD model, (left). Figure 30 (on the right) shows enlargement for four days of 

curves (1)-(3). 

ORP5: Perturbed input pressure prediction using the full, averaged FDO model with  35×35 model 

size   

The model prediction result for methane flux using the subject, averaged FDO, 𝑀𝑀𝐴 , with the 

hypothetical, synthetic, perturbed barometric pressure input is shown in Figure 31. The modeled methane 

flux variations over 300 days are depicted (on the left) by three curves: (1) �̂�35(35, 𝑡𝑖), measured, 

unperturbed; (2) 𝑄35(35, 𝑡𝑖), perturbed, predicted by the averaged Q model; and (3) 𝑄35(35, 𝑡𝑖), from the 

QD model, (left). Figure 31 (on the right) shows enlargement for four days of curves (1)-(3). 

The model prediction result for the percentage of methane concentration using the subject, averaged 

FDO with the hypothetical, synthetic, perturbed barometric pressure input is shown in Figure 32. The 

modeled methane concentration variations over 300 days are depicted (on the left) by three curves: (1) 

�̂�35(35, 𝑡𝑖), measured, unperturbed; (2) 𝑄35(35, 𝑡𝑖), perturbed, predicted by the averaged Q model; and 

(3) 𝑄35(35, 𝑡𝑖), from the QD model, (left). Figure 32 (on the right) shows enlargement for four days of 

curves (1)-(3). 
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Figure 22. Assumed barometric pressure variation with two synthetic, extreme, barometric pressure 

spikes at 40000 and 60000 time steps (left); and enlargement of one spike (right).  

  

 

Figure 23. (ORP1) Modeled methane flux over 300 days: �̂�10(10, 𝑡𝑖), measured, unperturbed; 
𝑄10(10, 𝑡𝑖), perturbed, predicted Q model; and 𝑄15(10, 𝑡𝑖), QD model, (left); enlargement 
for four days (right). 

   

Figure 24. (ORP1) Modeled methane concentration over 300 days: �̂�10(10, 𝑡𝑖), measured, 
unperturbed; 𝑄10(10, 𝑡𝑖), perturbed, predicted Q model; and 𝑄10(10, 𝑡𝑖), QD model, (left); 
enlargement for four days (right). 
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Figure 25 (ORP2) Modeled methane flux over 300 days: �̂�15(15, 𝑡𝑖), measured, unperturbed; 
𝑄15(15, 𝑡𝑖), perturbed, predicted Q model; and 𝑄15(15, 𝑡𝑖), QD model, (left); enlargement 
for four days (right). 

   

Figure 26. (ORP2) Modeled methane concentration variations over 300 days: �̂�15(15, 𝑡𝑖), 
measured, unperturbed; 𝑄15(15, 𝑡𝑖), perturbed, full Q model; and 𝑄15(15, 𝑡𝑖), QD model, 
(left); enlargement for four days (right). 

   

Figure 27. (ORP3) Modeled methane flux variations over 300 days: �̂�10(10, 𝑡𝑖), measured, 
unperturbed; 𝑄10(10, 𝑡𝑖), perturbed, predicted by the averaged Q model; and 𝑄10(10, 𝑡𝑖), 
from the QD model, (left); enlargement for four days (right). 
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Figure 28. (ORP3) Modeled methane concentration over 300 days: �̂�10(10, 𝑡𝑖), measured, 
unperturbed; 𝑄10(10, 𝑡𝑖), perturbed, averaged Q model; and 𝑄10(10, 𝑡𝑖), QD model, (left); 
enlargement for four days (right). 

          

Figure 29. (ORP4) Modeled methane flux over 300 days: �̂�15(15, 𝑡𝑖), measured, unperturbed; 
𝑄15(15, 𝑡𝑖), perturbed, averaged Q model; and 𝑄15(15, 𝑡𝑖),  QD model, (left); enlargement 
for four days (right). 

  

Figure 30. (ORP4) Modeled methane concentration over 300 days: �̂�15(15, 𝑡𝑖), measured, 
unperturbed; 𝑄15(15, 𝑡𝑖), perturbed, averaged Q model; and 𝑄15(15, 𝑡𝑖), QD model, (left); 
enlargement for four days (right). 
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Figure 31. (ORP5) Modeled methane flux variations over 300 days: �̂�35(35, 𝑡𝑖), measured, 
unperturbed; 𝑄35(35, 𝑡𝑖), perturbed, predicted by the averaged Q model; and 𝑄35(35, 𝑡𝑖), 
from the QD model, (left); enlargement for four days (right). 

    

Figure 32. (ORP5) Modeled methane concentration variations over 300 days: �̂�35(35, 𝑡𝑖), 
measured, unperturbed; 𝑄35(35, 𝑡𝑖), perturbed, predicted by the averaged Q model; and 
𝑄35(35, 𝑡𝑖), from the QD model, (left); enlargement for four days (right). 

Task 7. EWS Hazard Evaluator.  

 Hazard evaluation software tests continued between years 2 and 4 based on both DMVM and AI 

models as reported in the interim reports with results and conclusions. 

a. The presented numerical test with emulated, synthetic malfunctions represent disturbances typical 

from fan failure; roof collapse; gas outburst; gob outgassing; and mine fire. Hazard evaluation 

regarding gob outgassing was executed with a native Ventsim solver at five selected time periods 

in Year 2, reported in an interim report, listed in Appendix 1).   

b. Safety test buttons trial the EWS. All emulated, synthetic signals were prepared to be sent into the 

EWS Hazard Evaluator, emulating also the “safety test” button activation. Future applications of 

EWS with Safety, Health and Efficiency Output Generator outputs will require integration into the 

Ventsim Control software. 

Task 8. Design EWS Safety, Health and Efficiency Output Generator.  

 EWS output generator for hazard condition in Task 8 was planned in year 2 and exercised in manual 

tests. Automation is straightforward, based on tested EWS safety threshold crossing. Future applications 
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of EWS with Safety, Health and Efficiency Output Generator outputs will require integration into the 

Ventsim Control software. 

a. Safety hazard notification to mine management. Planned in the first and refined in the second year. 

b. Safety factors to support OVC or VOD decisions for economic benefits. Referred to automation in 

existing Ventsim Control functions with support from EWS signals. 

Task 9. Tests of EWS Outputs for Safety, Health and Efficiency.  

a. Safety hazard notification tests from synthetic data. Tests were discussed with Ventsim Designers 

for the project period, waiting for full integration in the Ventsim Control host processor.  

Task 10. Reporting 

 Three Annual and four Semi-Annual Reports, including two Milestone reports in the year 2 and year 3 

Annual Reports were submitted. 

 

4.0 Research Findings and Accomplishments   

 

Conclusions of the DMVM in the EWS 

 A Computational Energy Dynamics model is developed for fast mine ventilation, heat, and 

contaminant transport simulations with the ability to handle the dynamics referred to the “flywheel 

effects.” The innovative NTCF component used in the MF-based DMVM model is in close physical 

relationship to the AI-based FDO model that can be identified from AMS data, a new discovery from the 

EWS project.    

Interpretation and conclusions of the DQO model for analysis and forecast.  

 A quantum-vector -based DQO model was developed for fast processing of the mine’s AMS data 

model analysis and forecast in time. The DQO model has surpassed any other ML methods in the 

numerical tests for time series AMS data processing and forward predictions. Therefore, the DQO has an 

excellent potential to be a core element in EWS software applications in the future. 

The successful tests of the DQO model in the EWS for up to 1 hour forward-step forecast for 

temperature forecast and 3 hours for methane forecast makes the method appealing, especially in 

comparison to published results for NN models with poorer forward prediction performance for only one 

forward time step.  

Both the DQO model identification and its forward prediction results show excellent stability. The 

error ranges shown in Figures 12 a, b, 14 a, b, 16 a, b, and 18 a, b prove that the predicted results are well 

bounded and can be reliably used for hazard warning, considering that a reduced EWS trigger level to half 

of the accepted safety value can easily compensate even for a maximum of 100% prediction error. 

Interpretation and conclusions of the FDO model for analysis  

 A PDO-based FDO model is developed for deep-understanding a mine’s health and safety 

characteristics that determine the mine’s responses to unforeseen atmospheric, natural, or operational 

disturbances. The FDO model shows excellent potential to be a core element in EWS software applications 

in the future. 

Application of the FDO model with strongly perturbed, suddenly increased barometric pressure input, 

significantly different in shape and nature from the monitored data used in FDO model identification raises 
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the risk of errors due to the potential presence of false correlation in the input and output data streams. 

Such false correlation may be suspected due to the common influence of mining activities and operations 

at the longwall face upon both monitored and recorded input pressure and output methane concentration 

data. Lacking proof to exclude it, a hypothesis must be made about the lack of such false correlation for 

accepting the results presented hereby for FDO model analysis forecasting.      

As depicted in Figures 24 through 33, the model predictions for methane liberation due to pressure-

depression pulses generally agree, all showing responses in methane flux pulses within a -1.5 to 1.5 [kg/s] 

range for the 300 m face drift. The larger the model size from 𝑁 = 10 to 35, the higher the methane flux 

peaks in both the negative and the positive direction.  

The extreme, negative values from a linear model must be interpreted as a physically invalid extrapolation, 

well outside the small, all-positive validity range, that is used in model identification. Only the positive 

methane flux, entering the air flow is physically plausible. Methane mass flux may pulsate within a 

positive domain up and down used as the input data for model identification. Methane flow direction from 

the air flow into the strata is inconceivable, as methane mixes with air rapidly and only a low-concentration 

mixture (but not pure methane) may be driven back to the porous and fractured strata under forcing driving 

pressure.  

However, the tendency to block methane inflow right after the start of the Q-vector of the negative 

pressure pulse reveals useful methane transport information about the linearized system. It would be 

counterproductive to consider forcefully eliminating the unwanted negatives from the results.  The 

beginning part of the Q-vector refers to the oldest data in the sliding window, varying from about 5.5 days 

(𝑁 = 10) to 70 days (𝑁 = 35). The beginning part of the �̂�𝑚𝑎𝑥 − �̂� pressure Q-vector may be initiating 

methane blockage from a farther distance in the methane-bearing strata and starting a “peristaltic wave” 

of methane flux into the airway, culminating in a series of positive and negative pulses toward the latest 

time, showing dynamic fluctuations and definite time delays in Figures 22-32. 

The diagonal simplification of the FDO model replaces 𝑀 with a diagonal matrix, 𝑀𝐷, shown in (8). 

The physical meaning of diagonalization is an assumed history variation change in the driving force’s Q-

vector (that is, in �̂�), forcing to replace the real, variable history (used during model identification) into 

an abstracted, step change variation in �̂�, constant from the beginning to the most recent value. The step 

change solution eliminates the delayed, “flywheel” effects in the prediction for methane flux with time in 

the simplified, diagonal model solution.  

It is interesting to see that all diagonal, 𝑀𝐷 model solutions (marked as 𝑄𝐷 curves), show acceptable 

(albeit somewhat simplified) match to the measured, unperturbed data, but robust, single, positive methane 

flux as well as methane concentration responses to pulse-type perturbations. Note that 𝑀𝐷 inherits all 

information carried in the full 𝑀  matrix of the FDO model, and it integrates, rather than forcefully 

eliminates unwanted response components.                    

It is convenient to use the modeled pulses for the methane flux rates and the methane concentrations 

from the 𝑀𝐷 models for their apparent stability marked as 𝑄𝐷 curves in Figures 22-32. The small size, 

sliding window, full model with 𝑁 = 10 appears to be satisfactory for the response analysis to barometric 

pressure depression pulses. Each model is trained over a 10-day sliding time window, with past data 

sampled every 5 minutes for 2880 readings for processing the input Q vectors. Each model is evaluated 

within 10-3 sec on a regular laptop computer. Each model is updated every 5 minutes, allowing the EWS 

software to adjust to operational changes, and evaluate model consistence relative to previous models.  
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5.0 Publication Record and Dissemination Efforts 

 

Danko, G., (2022). “Functionalized Data Operator Model for System Analysis and Forecasting.” 

Applied Mathematics, 13(12), https://www.scirp.org/journal/am, doi: 10.4236/am.2022.1312062, 

pp. 988-1021.  

Dias, T. A., (2021) “Methane concentration forward prediction using machine learning from 

measurements in underground mines,” M.S. Thesis, University of Nevada, Reno.  

Dias, T., Belle, B., and Danko, G., (2021), “Methane Concentration forward prediction using machine 

learning from measurements in underground mines,” The Australian Institute of Mining and 

Metallurgy Publication Series No 7/2021, Proceedings, AusIMM Conference, 2021, pp. 4-

23,  ISBN 978-1-922395-02-3.  

Danko, G., (2021). “Quantum Operator Model for Data Analysis and Forecast.” Applied Mathematics, 

12, https://www.scirp.org/journal/am, ISSN Online: 2152-7393 ISSN Print: 2152-7385, pp. 963-

992. 

Danko, G., Bahrami, D., & Stuart, C., (2020). “Applications and verification of a computational energy 

dynamics model for mine climate simulations.” International Journal of Mining Science and 

Technology,  Volume 30, Issue 4, July 2020, pp. 483-493. 

Danko, G. (2019). “Computational Energy Dynamics Model for Mine Climate Simulations,” 

Proceedings, 17th North American Mine Ventilation Symposium, Montreal, Canada, pp. 1-12. 

Danko, G., (2019), “Safety, Health and Cost Benefit Optimization with Accident Intervention 

Assistance,” SME presentation, February 25, 2019. 

Danko, G., (2019), “Computational Energy Dynamics Models for Mine Climate Simulations,” SME 

presentation, February 25, 2019. 

 
In-person and online seminar presentations during Covid 19 lockdown in Australia: 
Seven presentations were given as follows reporting the results of the PI’s work in Australia during 

a 4-month Fulbright Research program related to the Alpha Foundation project: 

(1) “Safety, Health and Cost Benefit Optimization with Early Warning System Assistance,” April 

5, 2020, Brisbane, Howden Office. (Audience: research partners from Howden and a local 

mining company). 

(2) “Technology Elements for Future Mines Design,” April 5, 2020, Brisbane, Howden Office. 

(Audience: research partners from Howden and a local mining company). 

(3) “Enabling Technology Elements for Future Mines Design,” May 20, 2020, (Zoom 

Presentation) University of Adelaide. (Audience: Professors and research students; Organizer 

host: Prof. Michael E. Goodsite, A/Prof. Chaoshui Xu). 

(4) “Technology Elements in Future Mines Design,” May 22, 2020, (Microsoft Team 

Presentation), UNSW, University of Sydney. (Audience: Professors and research students. 

Organizer host: Prof. Bruce Hebblewhite, A., Prof. Saiied Aminossadati). 

(5) “Technology Elements in Future Mines Design,” May 22, 2020, (WebEx Presentation), 

WASM, Curtin University, Perth. (Audience: Professors and research students. Host: Prof. 

Vishnu Pareek). 

https://link.springer.com/article/10.1007/s40948-020-00149-x?wt_mc=Internal.Event.1.SEM.ArticleAuthorIncrementalIssue&utm_source=ArticleAuthorIncrementalIssue&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorIncrementalIssue_20200218#auth-1
https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2022.1312062
https://link.springer.com/article/10.1007/s40948-020-00149-x?wt_mc=Internal.Event.1.SEM.ArticleAuthorIncrementalIssue&utm_source=ArticleAuthorIncrementalIssue&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorIncrementalIssue_20200218#auth-1
https://link.springer.com/article/10.1007/s40948-020-00149-x?wt_mc=Internal.Event.1.SEM.ArticleAuthorIncrementalIssue&utm_source=ArticleAuthorIncrementalIssue&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorIncrementalIssue_20200218#auth-1
https://www.sciencedirect.com/science/journal/20952686
https://www.sciencedirect.com/science/journal/20952686
https://www.sciencedirect.com/science/journal/20952686/30/4
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(6) “Technology Elements in Future Mines Design,” May 29, 2020, (Zoom Presentation), 

University of Queensland, Distinguished Lecture Series. (Audience: Professors and research 

students. Host: A. Prof. Saiied Aminossadati) 

(7) “Safety, Health and Cost Benefit Optimization with Accident Intervention Assistance,” June 

2, 2020, (WebEx Presentation), WASM, Curtin University, Perth. (Audience: Professors and 

research students. Host: Prof. Vishnu Pareek). 

Reports  

2019 Mid-Year Report 

2019 Annual Report 

2020 Mid-Year Report 

2020 Annual Report 

2021 Mid-Year Report 

2021 Annual Report 

2022 Mid-Year Report 

 

6.0 Conclusions and Impact Assessment: 

 

The practical output of the 4-year research project is the development of the system frame of the EWS 

software complete with innovative AMS data management processes, prototype-tested DMVM model 

components and ML-AI processor elements. The mathematical foundations of the innovative processes 

are all tested and published in refereed, leading technical journals in the field. 

 

The challenges problems addressed in the research proposal to the Alpha Foundation were solved with 

innovative engineering methods. 

 

We maintained a working partnership with the dedicated developers of the Ventsim Visual software at 

Ventsim Howden, Brisbane, Australia. They are interested in further pursuing marketing the EWS for 

word-wide mining applications for the safety and health of the workers in the mines and for the safety of 

the mining operations. 

 

We trust that the methods and software tools developed in the funded project for the EWS are the most 

advanced in the field, worthy for the endeavor for world-wide marketing for practical applications. 

 

7.0 Recommendations for Future Work:  

• The AI models of DQO and FDO, the NTCF for the DMVM model, and the EWS framework and 

data handling structure will need to be incorporated in Ventsim Design and Ventsim Control. The 

issue of using a different source code, Matlab for the DMVM model in MF and EWS elements 

and Ventsim’s  C++ and .net dll environment will remain to be solved beyond the current project’s 

timeline.   

• Since computational speed and accuracy is less important due to the reduction in the role of 

DMVM in fast-speed data evaluation using new and innovative AI model elements, the EWS 

baseline software may rely solely on Ventsim’s current solver engine without incorporating the 

faster and more accurate MF engine.   
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• However, for accurate simulator models for mine ventilation, heat and contaminant transport, and 

especially, with mine fire, a true, thermodynamic-based transport model solver will be needed, 

currently available only in MF. A fully integrated linkage between Ventsim and MF, therefore, is 

timely, and highly recommended.   

• It will be necessary to recheck the EWS software functions against real-time data streams after the 

DQO, FDO and NTCF model parts are integrated into Ventsim’s current data handling system. 

The onsite training of the PI and working sessions in December, 2022 in Brisbane, Australia was 

helpful in deciding future cooperation in this area and in EWS marketing to the mining industry. 

• It may also be necessary to work together with the Vensim Control developers in Canada for any 

software transfer to Ventsim Howden as they are also involved in AMS data handling. 

• For real-time signal evaluation tests, recorded (‘conserved’), as well as live data can be likewise 

used as an emulator frame controller that can pass the data at the sampling speed from the database 

to the EWS for processing evaluation as a remote, cloud-computing EWS testing application.  

• Further mine tests and data are being sought for progressing EWS toward mining applications, 

especially for a metal mine in Nevada as an NDA has already been signed between UNR and NGM 

for cooperation in EWS tests.  
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9.0 Appendices:  

 

Appendix 1. Description of the activities and results in each tasks in each year  

A1.1.1. Discussion of the results of the work in year 1 

Detailed documentation of the work is provided in the Appendices of  the 1st Semi-Annual and 1st Annual 

reports.  

A1.1.1.  EWS model setup tests with Ventsim and MF-DMVM comparison 

a.  Ventilation flow and pressure models 

• A conceptual, simplified, deep, and hot, vertical intake shaft, a straight, long horizontal drift, and 

an exhaust shaft were modeled under forced ventilation by a main fan both in Ventsim and MF-

DMVM.   

• The simulation results showed very good agreement between the two models both in the flow rates 

and air pressures. 

a. Dynamic thermal model  

• It was not possible to get daily flywheel results from Ventsim. The results of a daily flywheel 

simulation from Multiflux was demonstrated without difficulty.  

• The annual temperature variations  for one year after a five-year pre-ventilation period was tested 

for comparison between Ventsim and MF-DMVM for six selected points along the network model. 

The general agreement was reasonable, but a gradual deterioration was observed with increasing 

distance, showing a 10% to 80% difference in dry bulb temperature between Ventsim and MF-

DMVM simulations, depending on time over the year. 

• In conclusion, the EWS design using the MF- DMVM was found to be the prudent way to proceed.  

A1.1.2. EWS model and mine AMS data comparison 

• Monitored AMS mine data was also analyzed for gaining familiarity from 11 sensor stations from 

a partner metal mine in Nevada for (1) air flow rate, (2) temperature, (3) Carbon monoxide (CO) 

concentration and (4) Oxygen (O2) concentration for two 14-day time periods in March and April, 

2019. 

• Data were evaluated for inspection and signal processing exercises. The raw data sampled every 

minute, showed various imperfections including outliers, unrealistic values and missing readings.  

The signature of temporal changes appeared to be induced by regularly variable mining activities.  

• Overall, manual observation of the data with respect to time could not notice correlations for 

gaining good understanding of the temporal data variations.  

• Ventsim’s native solver agreed in monthly-averaged temperatures on sensor 1 and 2 locations 

closely with the measured, mean temperatures, but on statistical sense the Ventsim results were 

found somewhat off the statistical range, and lower than the measured real temperatures, showing 

the need for model calibration.  

A1.2. Discussion of the results of the work in year 2 

Detailed documentation of the work is provided in the Appendices of  the 2nd  Semi-Annual and 2nd  

Annual reports.  

A1.2.1. Tests of EWS using AMS data with Ventsim and MF-DMVM models 

a.  Gob model setup tests  
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• In situ mine data were obtained from a large operating coal mine in Australia for the EWS tests. 

A complete AMS dataset was received from the operating mine to support our studies, aiming at 

matching, and evaluating measured data, including model self-calibration and root-cause 

analysis, with our dynamic simulation models.  

• The data set included a full, 3,687 x 310 m longwall panel for its 327 days of operation. The EWS 

simulation model tests started with the evaluation of the variations of the daily-average gas 

concentrations against mine data from 16 monitoring locations in the longwall panel over the entire 

recorded time period. AMS data of air flow, pressure, temperature, O2, CO, CO2 and CH4 gas 

components were included at 16 moving AMS stations during coal extraction over the 327 days.  

• The first goal was to set up the simulation model of the gob, the connecting airways, and the coal 

strata in both Ventsim and MF-DMVM. A gob dynamic network model was first set up in Ventsim, 

capable of simulating and following the atmospheric conditions in an entire longwall panel with a 

moving face cut drift in each day, linked to a “schedule table” for modifying the geometrical and 

flow resistance parameters of the network model. Substantial in-kind support was received from 

the Howden-Ventsim development team in linking the gob model setup for the EWS task to the 

Ventsim Visual and also Ventsim LiveView a version. (Note: LiveView has since been replaced 

by the Ventsim Control version). 

• A gob outgassing model was added to the DMVM as a transient model component. The liberation 

of Methane from the coalbed during drift development and longwall shearing operations was 

modeled using the methods in transport phenomena in porous media, staring with Darcy’s law that 

expresses the flow of a fluid driven by the pressure gradient.  

• The time-dependent mass transport model for gas flow in porous media was developed as a 

“Numerical Transport Code Functionalization “ (NTCF) model resulting in a matrix-vector 

equation with an NTCF matrix operator depending only on the geometry and geophysical 

properties of the coal seam and the gob. The model is described in detail in the 2nd Semi-Annual 

Report in 2020. 

b.  AMS data matching with DMVM by input parameter adjustment   

• The second goal  was to check if the DMVM model could be kept calibrated against monitored 

data during operations. It was found that the simplified DMVM model prediction for Methane 

concentration at the shearer location moving over the 3687 m length in 327 days could match the 

average trends of measured Methane concentration variations with time and location reasonably 

well by the adjustment of the input property values of the geophysical input data of the gob.  

• However, the un-calibrated model cannot show enough variation of the daily concentration 

oscillations. These monitored concentration oscillations around the smooth trends from the 

simplified DMVM model indicate local inhomogeneities in gas release rates possibly due to 

fractures and/or high-permeability stress zones encountered during production. 

• Methane source variations with location and time are expected to be the fact of life during mining 

in a longwall panel.  The model must be matched to the changing situation that is random in nature 

and cannot be learned from past encounters captured by the AMS data. The only “known 

unknown” is that running into high-permeability locations such as joints, cleats, bedding plates 

and stress-relaxation locations will happen; and various amounts of methane and other gas species 

will be released.  
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• In order to perform an effective self-calibration of the dynamic methane transport model, the 

process must recognize and further anticipate changes in the model parameters from the measured 

concentrations in comparison to the causal, predictive DMVM model. 

c.  AMS data matching with DMVM by self-calibration with root-cause analysis   

• Self-calibration helps close the difference between model prediction and measured concentration 

variations with location and time in the longwall panel example. Even a simple method of 

backcalculating a “dynamic Methane influx difference” as a “self-calibration Methane flux 

(SCMF)” from the difference between the AMS and DMVM concentrations, and adding this 

SCMF term to the simulated Methane influx could be quite effective in finding a reasonable 

agreement between model prediction and monitored results. 

• The application of ML and AI with NN was initiated, discussed in Appendix 4 in the Semi-Annual 

report of the 2nd year. Using the AMS signal trends of the longwall operation of the mine, AMS 

data matching and future events predictions were tested. It was concluded that while gooddata 

matching was reached during the training time period, good forward prediction ahead of even just 

a few days of time cannot be achieved.  

• It was concluded that training the NN model for a 50-day previous time interval, a future sample 

of event may not be self-similar to the prior series of events.  Therefore, learning from the past 

series cannot give valid value of a single future event but only for its self-similar statistics.  

• The question was raised if the NN model’s best use is not the prediction of the future value but the 

changing direction of the signal whether it is likely increasing or decreasing one time-step ahead. 

A future value can be predicted with the use of the observed value of the previous day’s average 

observation, C(t), and the first derivative of the daily trend, dC(t)/dt. If the dC(t)/dt parameter can 

be predicted from the NN model, then keeping it constant for predicting the next-day average value 

can be calculated as  C(t+1)=C(t)+dC(t)/dt.  

• A plan was made for NN model tests for forward prediction of the first derivative of the signal 

change in future exercises. 

• It was anticipated that the model calibration would have to be in two different time scales, one 

using daily-average concentration data and one applying the minute time scale data for rapid 

evaluation of concentration peaks during the day. Figure 2 in Appendix 1 shows the logic flow 

chart of the proposed DMVM model matching scheme using the dual time scales. 

A1.2.2. Further tests of EWS using AMS data with Ventsim and MF-DMVM models 

a. Data abstraction for synthetic data based on in situ mine data. 

Lacking a full, minute-scale AMS data set from our partner mine, it was necessary to use minute-scale 

AMS data sets for the dual time scale EWS tests in addition to the daily data of the coal mine used 

before. The real-time, daily averaged mine data was combined with the limited number of minute time 

scale data from AMS with randomly combined, abstracted, synthetic variations for the amplitudes of 

the minute scale concentrations around the daily-averaged data in lieu of real mine data. Such input 

data abstraction was necessary to proceed with the EWS tests in data management and the fast forward 

prediction algorithms to simulate normal operations (with amplitudes not exceeding explosion limit) 

as well as in checking worrisome situations. This is consistent with our original, proposed method of 

testing out-of-the ordinary situations with synthetic data for higher-than acceptable peaks to trigger 

early warning. Once the EWS prototype software is tested against the mine-originated, but 
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synthetically abstracted data, it will be straightforward to switch to real, fine-scale mine data in future 

applications.  

• Barometric pressure (BP), air flow rate (Qm) and the concentrations of O2, CO, CO2, and CH4 

were selected for gas concentration studies from the AMS sensors. Eight sensor stations were 

selected for the EWS software tests, and their daily average as well as minute scale variations were 

examined for acceptability, detailed in the Annual Report of the 2nd year. The data referred to 

various stages and working configurations of the mining operation providing a good insight of the 

expected variations of the monitored parameters.  

• The ranges of the average, minute-to minute variations (AMV) were quite high for the selected 

days, exceeding the 100% variation range relative to the daily-averaged readings over the 327 

sampled days. It was found to be surprising, however, that the average, day-to-day variation 

(ADV) of the daily-averaged data was small, e.g., , 0.1%, 1.1%, 4.5%, 11.5%, 13.8%, 4.0%, 4.3% 

and 4.5% for the BP, Qm, and the six Methane concentration points. This was explained by the 

1445 number of minute-averaged samples used for the calculation of each daily-averaged signal 

value by the data acquisition system at the mine. 

• The relatively modest AVD values for the signals have a profound benefit for signal processing in 

the EWS. Accordingly, the fast-forward prediction of daily signal averages can be calculated from 

first-order extrapolations of the daily averaged signals for estimation of the data 1 day ahead of 

time. In short, the daily-averaged mine AMS data can be used as the self-similarity model of the 

mine for a 1-day forward prediction of all expected, averaged values. The question, however, 

remains open as to how the real-time signal evaluation at the minute-scale can be processed fast 

enough for hazard evaluation.   

b. AMS signal evaluation results from DMVM  

• The purpose of the EWS signal processing was to find out-of-the ordinary events from 

continuously evaluating the AMS signal trends. As the AMS of the mine employs concentration 

but not source sensors, the focus was on inverse identification of the species influxes as sources 

from concentrations. Causal relationships were established by transport model building from first 

principles; and statistical, signal processing, and by ML for AI model identifications such as NN. 

• Transport model results for methane influx prediction at the longwall face drift were obtained 

calculated at fixed locations first and verified again that the fixed-position processing is not 

applicable to matching production concentration data which are related to an advancing longwall 

face cut and moving Methane source positions (for further detail please refer to Appendix 1 of the 

2nd Annual Report).  

• The results from DMVM for predicted sources showed that the NTCF model was missing much 

of "production" sources which could not be predicted as it was not known where they were coming 

from. This was one of the “known unknowns” in the mine which must be evaluated backward from 

the AMS data using daily average concentrations. The good feature is the low ADV, and good 

stability in the daily-averaged sources. The challenge is to process the EWS signal for accounting 

for the fast-changing sources which may vary widely. 

•  Methane concentration forward predictions by one day ahead were tested from days 1 through 

327 at the MG and TG moving locations in the panel after self-calibration of the DMVM against 

AMS data. The resultant, daily averaged Methane concentrations at both the MG and TG locations 
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were very reasonably matched with the measured AMS signals in spite of a simplified, first-order 

extrapolation for a one-day forward prediction in the process. 

• Forward-predicting future values of measured signals were further tested using the LSTM-type 

NN model described in Appendices 2 and 3 of the 2nd Annual Report.  

• An integral analysis of the time-variable, minute-scale mass influxes was carried out at the six 

selected positions for four selected days. It was found that the minute-averaged sources only 

modulate up and down the methane influxes around the daily average value. It was concluded that 

these integral properties robustly show whether at any minute there is a negative “deficit” or a 

positive “surplus” of Methane source relative to the already forward-predicted, daily averages. 

Since hazard is related to increased concentrations over the predicted averages, only the time 

periods with positive, “surplus” sections should be of concerns for hazardous conditions. The 

continuous, integral evaluation of the instantaneous Methane source variation with time may be 

used as a robust element of a potential, future hazard evaluation. 

• In addition to the integral analysis, it is important to continuously evaluate (1) the statistical 

homogeneity and (2) self-similarity of the seemingly stochastic, minute-averaged variations of 

Methane sources. Continuous, real-time checking of properties of (1) and (2) are needed to 

maintain “trust” that the daily-average values of the Methane influx over the integrated strata 

volumes and time each day in the mine will not change much and will agree with the first-order 

forward predictions from the one-day step ahead forecast. 

• The periodograms of the minute-averaged Methane production sources were tested for the six 

selected locations and four sampled days. It was found that all valid signals were similar in 

characteristics, revealing a typical, uniform, statistical distribution of variation frequencies; 

whereas all appearing very different from a normal distribution that would show a horizontal 

shape. The data obtained from the sensors on January 13 do not follow the same trend, likely due 

to data acquisition system malfunction. This data, therefore, was discounted from the studies. 

• A hypothesis was defined in the project, namely that as long as the periodograms characteristics 

follow a “machine learned” pattern, the typical, statistical homogeneity, property (1), and self-

similarity, property (2) are both valid; and, therefore, the integral source variations may be reliably 

used for real-time hazard evaluation. 

  c. AMS signal evaluation results from ML with LSTM-type NN  

• The LSTM tested in the project gave good predictions for data that had pattern, (sinusoidal 

function, for instance), where up to ten steps ahead could be predicted with a good degree of 

accuracy.  However, when real data were used from AMS, the predictions were limited to a 

maximum of five steps ahead. 

• The training time was also a concern for the LSTM type of NN, using the long-short term memory 

and the explosion gradient in the training process. Although it is a powerful version over the 

conventional NN and RNN methods the long training time and the short forward-predicting time 

period may not be practical in real-time EWS applications. 

A1.3. Discussion of the results of the work in year 3 

Detailed documentation of the work is provided in the Appendices of  the 3rd  Semi-Annual and 3rd  Annual 

reports.  

A1.3.1. Tests of AMS data processing and compression technique for the MF-DMVM model elements 
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 The minute-average AMS data was processed into 5-minute average data for database size 

reduction as a “course” time division data for EWS model evaluations. It is expected that very 

rapid hazard events in the second time range will need no EWS model evaluation but rather an 

immediate emergency response from mine management.  

• The 5-minute average data is fine enough for data variation representation and has the necessary 

information density of minute-sampled variables for the EWS simulations and evaluation. The size 

of data for each variable is 470,880 from 1440 minute-sampled daily values for each of the 327 

days. Each active model network element will have to process this size of data.  

• Transport processes involving storage of mass or thermal energy and having memory of history 

variations such as concentrations and temperatures must store past information up to the last time 

instant.  Future predictions from present and past data must handle the large data flow. 

• Methods were tested to compress the large amount of data without losing the essential 

information content in it in order to produce the fine time scale concentration and temperature 

variations while retaining the delayed transport features from long term history effects.  

A1.3.2. Tests of MF-DMVM thermal and concentration model predictions using compressed AMS data  

  (Please refer to Appendix 3 of the 3rd Semi-Annual Report for further detail.) 

• Numerical examples proved the applicability of the presented data compression technique. In 

the first thermal model application, on the one hand, only a few per cent differences were seen 

between the full and the approximate, compressed model results. Even the outliners were 

within the 10% difference range on the day-by-day basis, which was around the expected, 

targeted error in the EWS evaluation. On the other hand, the data compression and associated 

reduction in storage capacity as well as processing time  was 94,176/50=29.22-fold, a major 

reduction, favoring the compressed, to the full model.  

• In the coal mine examples with faster AMS data stream, the data compression and associated 

storage capacity as well as processing time was 1461/50=1883.5-fold, a more dramatic ratio.  

• The examples involving large AMS data streams demonstrated the necessity to reduce the data 

sizes while maintaining the long-time history effects together with the fine details of the 5-

minute-scale data variations. 

• In view of the comparisons, common wisdom prefers faster model solution with a slightly 

lower accuracy than the other way around, especially considering that the DMVM model is 

meant to proceed with self-calibration at least each day-by-day time period. 

A1.3.2. Tests of AMS signal pattern, trends, and root-cause processes 

• The results showed that the LSTM and time-series techniques performed similarly, and both were 

sensitive to sliding window sizes and the number of forward-step predictions. The time series filter 

showed to be much faster than the LSTM model and presented a higher accuracy using the first 

order fitting and using the filtered data for training and predicting.  

• The transport model-based root-cause Methane source evaluation provided a forward output with 

a more even relative error variation but slightly higher peak values than those obtained from the 

predictions using the time series filter. Nevertheless, the one-day forward prediction result for the 

root-cause CH4 source as an ”expected target limit” was the most useful parameter for EWS hazard 

evaluation for rating the risks due to the minute-scale variation of CH4 influx variations during the 

previous day. 

• The predictions were acceptable, but more tests were warranted to try to increase the accuracy of 

the predictions from the root-cause transport model. 
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A1.3.3. Model elements for AMS signal pattern, root-cause processes, and froward prediction 

evaluation   

• As part of the DMVM and the AI model tools in EWS, a new Dynamic Quantum Operator (DQO) 

model was  developed. The DQO model was tested to match dynamically monitored outside 

temperature, and Methane data for a coal mine. The DQO model was found advantageous 

regarding processing time, data compression, and modeling accuracy. 

• A new paradigm was introduced for periodic, automatic model adjustment over long time intervals 

of regular operations to keep the DMVM model calibrated as mining conditions may vary with 

time. Since only self-calibration over long time periods (several hours or days) can be used for 

DMVM model adjustment in order to follow slow-changing and nonthreatening  model conditions, 

a question was raised: if the DMVM model is needed for self-calibration against the AMS data 

why not only the AMS matching and already long-time-trained AI model (such as the DQO) is 

used instead for both model calibration and froward prediction?  

• The combined use of the AI-based DQO model can simplify the EWS processor and gain precious 

time for early warning. Evaluating the root-cause source terms during calibration of the DMVM 

model r DQO model identification can eliminate the need for a fast-forward DMVM model 

prediction as the DQO model can forward predict the expected future source term from a 

recognized hazard directly. 

• It is necessary to automatically recognize any short-time, fast, and potentially hazardous deviation 

between the regularly conditioned DMVM model results and the AMS data. The EWS warning 

evaluation must be triggered by an early detected, lowered threshold crossing of any designated 

gas concentration or temperature signal in the AMS data. The development and testing of such 

early-warning triggering processors is paramount to the success of the EWS software. Such a 

trigger processor using DQO was discovered and tested in two application examples in the project. 

• As no hazardous event has taken place during the study time period, we used the same original 

AMS data in subsequent exercises with added, synthetic perturbations for emulating would-be 

scenarios for hazard evaluation and warning indication by EWS. 

• In the original concept, it was necessary to identify the root cause of the fast and unusual signal 

deviation recognized by the evaluation for the fast-forward prediction of the future outcome of the 

disturbance. The original concept in the EWS used the DMVM model for root cause analysis as 

well as fast-froward prediction. The original concept requires (i) the evaluation of a variety of 

possible causes with a fast-running DMVM model to best match the deviated signal; and (ii) the 

accelerated-time simulation of the effect of the identified cause relative to the safety case, that is, 

the likely future occurrence of a threshold crossing of the flagged signal in real time. The two-step 

process of (i) and (ii) can be replaced with a single step process using the DQO model.     

• The simplified concept uses the forward-predicted data from a DMVM-combined AI model 

instead of the DMVM forward prediction alone in EWS hazard evaluation. The new concept has 

three essential components: (a) the transport-process elements of the DMVM has already been 

gradually migrated into the AI model, providing guidance in causal relationships (for example, 

Methane mass influx as root cause is determined directly from AI model matching Methane 

concentrations while incorporating measured air flow rate in the evaluation); (b) AI model 

matching over long-time intervals already provide automatic self-calibration, eliminating the need 

for additional calibration; and (c) additional, root-cause evaluation and fast-forward simulation 
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becomes unnecessary as the primary, critical signal is forward predicted as an early-real-time 

forecast. The DVMV-based hazard evaluation will still be needed in the evaluation of safety and 

health conditions in the un-monitored areas of the mine.  

• A hypothesis test about significant time gain is tested and affirmed for DQO model application in 

racing for preventive interventions to counter impending hazard events in methane concentration 

increase in the mine’s atmospheric conditions. A time advantage of 150 minutes were gained by 

the early detection from the DQO model prediction, saved for preventive interventions to alleviate 

impending hazard conditions at mine’s longwall face.  

• Two different, forward-prediction algorithms were developed, based on the DQO model for mine 

safety and health applications: one used a multiple froward step DQO model training setup and a 

one-step forward prediction; the other a used single forward step DQO model training setup and a 

multi-step, cascaded forward prediction algorithm. 

A1.3.3. NN and time series AI model elements for AMS signal pattern and froward prediction  

• Tests of the LSTM predictions were found to be similar to those using the time series filter 

predictions. The LSTM tests showed that increasing the number of time steps in the training 

period did not increase the accuracy of the predictions.  

• Increasing the number of forward time steps in future predictions rapidly increased the error 

between predictions and original target.  

• The tests with the time series filter showed that it was much faster than the LSTM and it was 

easier to implement. The first order polynomial fitting gave the best results compared with the 

second order fitting and the LSTM model. Filtering the data made the predictions better for both 

LSTM and the time series filter. 

A1.4. Discussion of the results of the work in year 4 

A1.4.1 Paradigm change in AMS signal evaluation.  

• The original concept of detecting a dangerous level of gas concentration before its real-time 

occurrence was based on three consecutive actions: (1) detecting a suspiciously rising 

concentration but still below the dangerous level (e.g., crossing 0.5% CH4) at any concerned 

location; (2) finding the possible root-cause (e.g., CH4 inburst at an upstream location, or air flow 

blockage due to roof collapse, etc.) with the DMVM or ML model for the rapid, but still low 

threshold crossing; and (3) finding the possible, continuing effects of the root cause at any 

concerned location at a future time with the fast-running DMVM or ML model; and (4) checking 

if a dangerous concentration level (e.g., 4% or higher) may be exceeded. Steps (1)-(3) require 

multiple, overlapped, repeated, simultaneous processes to be run parallel on the DMVM processor 

or the ML model checking also various hypotheses on the possible root causes. It has been 

demonstrated (e.g., in our July, 2021 report) that automatic model adjustment is necessary to keep 

the DMVM model calibrated as mining conditions vary with time without knowing how and why 

to place the root causes into the model as inputs.  Predictions in Steps (2) and (3) are faster with 

ML models, however, their training time may be problematic, discussed in the July 2021 report.   

• The new DQO model for forward prediction is faster and require less data to store. The forward-

prediction result from the DQO model may allow to check expected outcomes (e.g., at each 5 

minute time step) in future time (e.g., 25, 30, 50 minutes later time) at desired locations. Since the 

DQO model is trained to best match the monitored data of critical concentration at every time step 
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in past time, there is no need for additional DQO model calibration. Since the root cause is 

manifested in the monitored data, there is no need to “deep understanding” the root cause for 

finding its outcome other than matching the DQO model during its training continuously for every 

single time step.  

• The AMS data evaluation needs storage, massive data processing, and machine learning.  The 

DQO predictor uses compressed data and provides forward prediction for up to 20–30 time steps 

useful for fast signal and data processing. The most important, fast-response EWS functions by 

EWS data analysis may use the DQO processing in all monitored locations with only a few 

dynamic model-elements of the DMVM simulator in real-time applications.  

• The much slower method of numerical modeling may only be needed for locations lacking 

atmospheric monitoring sensors (AMS), or for recognizing early on some slowly developing, but 

nevertheless disastrous events. These remaining EWS functions should still be done by high-

precision DMVM in which the NTCF model method must be included.  

• A linkage was developed between the DQO and the NTCF models for the critical branches where 

the NTCF model may be identified from the quantum vector data during the data processing 

automatically.  

• It was discovered later in 2022 that better results may be obtained for identifying an NTCF-type 

operator model, a Functionalized Data Operator (FDO) (Danko, 2022) from the AMS data using 

sampled history input data instead of quantum vector data processed by weighted data integrals 

described and used in the DQO model.  

A1.4.2. EWS evaluation tests   

Tasks 1, 2, 3, 4, 5, 6, 7, 8, and 10 have been worked on during the reported time period, described and 

documented in detail, given in Appendices 1 and 2 of  the 4th Semi-Annual report. Further detail in a new 

publication in 2022 is given in the referenced paper.  

Task 1. Complete the EWS Framework.  

AMS network and data mapping to the EWS.  Compatibility in handling AMS data with the current 

Ventsim Control software was implemented in EWS design. The AMS data stream handling from 0.1-

sec acquisition sampling to 5-minute average format was completed, coded, and tested. The AMS data 

from all sensors were  processed from 0.1s sampling and stored in a new type of “Quantum Vector” 

(QV) format for Fast-Signal (FS) data, whereas one element of the FSQV was re-sampled at 5-min. 

intervals for storing in QV format for Slow-Signal (SS) data for further processing. 

Task 2. The DMVM software in Multiflux. 

Dynamic model elements and configurations for air flow, heat, moisture, and contaminant 

concentration. Compatibility in handling the dynamic CH4 transport elements in DMVM with the 

current Ventsim Control software was implemented in EWS design, using the QV data format.  

Task 3. The DMVM Model Calibrator.  

DMVM model calibration processes. A unified Quantum Operator Predictor (QOP) and a 

Functionalized Data Operator (FDO) model were tested for identification of the NTCF (Numerical 

Transport Code Functional) model-element in the DMVM.  

Automatic, self-calibration processes. Automatic extraction of NTCF-QOP and NTCF-FDO model-

elements were tested from AMS mine data for pressure-driven CH4 mass flow rate and concentration.  
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Task 4. Safety awareness processor.  

AMS signal patterns recognition. Further tests were conducted using two types of QV data based signal 

pattern recognition methods: the ‘non-relativistic’ QOP model, described in the previous report, and 

the new, ‘relativistic’ NTCF-FDO model. 

AMS trend analysis. Signal trends were studied for synthetically deviated AMS signals in barometric 

pressure and air flow rate input data, processed by the new, relativistic, NTCF-FDO method. 

Task 5. The Root-Cause Evaluator in the EWS.  

Signal processing methods for recognizing unusual patterns in the AMS signals. The NTCF-QOP and 

NTCF-FDO methods were tested for processing dangerous patterns for CH4 spikes. 

Root-Cause evaluation of model conditions and source terms in the DMVM. The NTCF-QOP and 

NTCF-FDO methods were tested for processing the CH4 source term from AMS signal trends. 

Task 6. Fast-Forward Predictor.  

The fast-forward DMVM with NTCF components. The QOP and FDO were linked to the NTCF 

method in the reported period and the NTCF model element was incorporated in the DMVM model. 

Fast-forward predictor tests. Further tests were made on the stability and applicability of the fast-

forward prediction techniques regarding perturbed signal shapes.   

Task 7. EWS Hazard Evaluator.  

Gas liberation model tests. Strata and gob outgassing due to barometric pressure variations were tested 

with the NTCF-QOP and NTCF-FOD models.    

Other proposed elements in this task are malfunctions in fan failure; roof collapse; gas outburst; and 

mine fire. A directed test was completed with air flow perturbation together with barometric pressure 

perturbation, representing either fan failure or roof collapse.    

Task 8. Design EWS Safety, Health and Efficiency Output Generator. 

Safety hazard notification to mine management. Conceptional design of the safety hazard output was 

completed in the reported period as these functions are proposed to be accessed directly from the real-

time Ventsim Control host processor (see safety warning generation in the data processing scheme in.  

Task 9. Tests of EWS Outputs for Safety, Health and Efficiency.  

Safety hazard notification tests from synthetic data– tests were discussed with Ventsim Designers for 

the reported period, waiting for full integration in the Ventsim Control host processor.  

Task 10. Reporting. 

 Progress Report. All reports completed. 
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Appendix 2. An early plan of DMVM model calibration in two different time scales.

 
Figure A2.1. Logic flow chart of the DMVM model calibration against AMS data in two different time 

scales. 
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Figure A2.2. Logic flow chart of the EWS data handling in two different time scales. 
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and compress them in QV 

(FS) Process of Fast Speed data into 
Quantum Vectors (QV) and build DQO 
to: (a) analyze for EWS  forecast; (b) 
recognize fast events; and (c) re-
sample a selected QV component 
every 5 minute for slow speed data 

Data cleaning 

(a) Warning of steep threshold 
crossing 

(b) Beeping at passing event spikes 

Real-time AMS data stream 

Data server and storage 
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Appendix 3: Improved MF coupled heat-flow solver.I 

 In this section, a challenging example has been set up to test the computational performance of the 

new and improved coupled heat-flow solver within the MF6 engine. Figure A3.1 shows the network layout 

prepared in Ventsim for a vertical multi-level network. The model includes a fixed flow fan, indicated in 

Figure A3.1, with 200 kg/s of mass airflow rate. Each branch also includes a 100 kW of sensible heat 

source. There are five surface nodes with three of them at the intake side.  

 

Figure A3.1. Ventilation model set up in Ventsim. 

 The model is transferred to MF6 solver to run the coupled heat-flow solver and plot additional 

information about the model setup. Figure A3.2 shows the branch ID along with the network layout with 

the flow direction. The 200 kg/s fixed flow fan is placed in branch 18. There are three intake boundary 

points on the left side of the network and 2 exhaust points on the right. Figure A3.3 shows the network 

layout with junction or Node IDs. 

 Figure A3.4 shows the flow solver convergence error down to 1e-9 kg/s in 12 steps. A good 

convergence can also be achieved to below 0.01 kg/s in three steps. Figure A3.5 shows the convergence 

error curve for the coupled solution to within 0.001 oC in only 7 iterations. 

Figure A3.6 shows the comparison of branch end pressures between Ventsim and Multiflux. The 

results are in excellent agreement with 40.3 Pa RMS error of the difference. Table A3.1 summarizes the 

comparison data for branch end temperatures.  

Fan 

Heat 

Surface nodes 
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Figure A3.7 compares the branch airflow rates between Ventsim and Multiflux. The results are in 

excellent agreement with 2.8 kg/s RMS error of the difference. Table A3.2 summarizes the comparison 

data for branch end temperatures.  

The comparison of branch end temperatures between Ventsim and Multiflux is shown in Figure A3.8. 

The results are in excellent agreement with 0.08 oC RMS error of the difference. Table A3.3 summarizes 

the comparison data for branch end temperatures.  

The results lead to the conclusion that Ventsim is comparing excellently with MF and can be used as 

a native solver in the EWS implementation.   

 

                
Figure A3.2. Branch ID assignment in MF. 
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Figure A3.3. Node ID assignment in MF. 

 
Figure A3.4. Flow solver convergence error. 
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Figure A3.5. Coupled heat solver convergence error. 

 
Figure A3.6. Comparison of branch end pressure between Ventsim and Multiflux, RMS= 40.3 Pa. 
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Table A3.1. Comparison data for branch end pressure between Ventsim and Multiflux. 

 

Branch 
ID 

Ventsim Multiflux Pressure Difference  

P1 [kPa] P2 [kPa] P1 [kPa] P2 [kPa] DP1 [Pa] DP2 [Pa] 

1 102.48 103.04 102.48 103.05 0.0 1.3 

2 103.04 103.61 103.05 103.61 5.8 2.7 

3 103.59 104.18 103.61 104.19 20.9 17.6 

4 104.72 104.39 104.71 104.38 -6.7 -4.6 

5 103.61 103.03 103.53 102.96 -72.8 -67.7 

6 103.03 102.46 102.96 102.39 -67.7 -69.1 

7 102.25 103.05 102.25 103.05 0.0 -3.1 

8 103.62 103.61 103.62 103.61 -1.9 -2.2 

9 103.04 103.62 103.04 103.62 2.0 -1.9 

10 102.63 103.04 102.63 103.04 0.0 2.0 

11 103.61 103.59 103.53 103.52 -74.1 -74.2 

12 103.59 102.84 103.52 102.77 -74.2 -68.9 

13 102.84 102.33 102.77 102.26 -68.9 -73.0 

14 104.20 104.39 104.19 104.38 -2.3 -3.0 

15 104.20 104.76 104.19 104.75 -3.9 -7.9 

16 104.37 104.09 104.38 104.11 17.0 19.7 

17 103.93 103.59 103.87 103.53 -55.6 -52.4 

18 104.09 103.93 104.11 103.87 19.7 -55.7 

19 104.76 104.72 104.75 104.71 -7.9 -6.7 
 

 
Figure A3.7. Comparison of branch airflow between Ventsim and Multiflux, RMS= 2.8 kg/s. 
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Table A3.2. Comparison data for branch airflow in kg/s between Ventsim and Multiflux. 

 

Branch 
ID 

Ventsim Multiflux Difference 

1 85.75 84.00 -1.75 

2 117.64 113.93 -3.71 

3 200.00 200.00 0.00 

4 94.16 94.10 -0.07 

5 104.53 100.37 -4.16 

6 104.53 100.37 -4.16 

7 31.89 29.93 -1.96 

8 82.36 86.07 3.71 

9 82.36 86.07 3.71 

10 82.36 86.07 3.71 

11 95.47 99.63 4.16 

12 95.47 99.63 4.16 

13 95.47 99.63 4.16 

14 105.84 105.90 0.07 

15 94.16 94.10 -0.07 

16 200.00 200.00 0.00 

17 200.00 200.00 0.00 

18 200.00 200.00 0.00 

19 94.16 94.10 -0.07 
 

        RMS=0.08 o C. 

Figure A3.8. Comparison of branch end temperatures between Ventsim and Multiflux, 
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Table A3.3. Comparison data for branch end temperatures between Ventsim and Multiflux. 

Branch 
ID 

Ventsim Multiflux 
Temperature 
Difference 

T1 [oC] T2 [oC] T1 [oC] T2 [oC] DT1 [oC] DT2 [oC] 

1 30.65 32.29 30.65 32.32 0.00 -0.03 

2 32.83 34.16 32.90 34.26 -0.07 -0.11 

3 34.58 35.59 34.60 35.62 -0.02 -0.03 

4 38.15 38.92 38.19 38.97 -0.05 -0.05 

5 38.61 39.06 38.57 39.07 0.03 -0.01 

6 39.06 39.52 39.07 39.58 -0.01 -0.06 

7 30.52 34.20 30.52 34.49 0.00 -0.29 

8 33.98 35.18 33.89 35.05 0.09 0.14 

9 32.28 33.98 32.24 33.89 0.04 0.09 

10 30.73 32.28 30.73 32.24 0.00 0.04 

11 38.61 39.63 38.57 39.57 0.03 0.07 

12 39.63 40.02 39.57 39.92 0.07 0.10 

13 40.02 40.62 39.92 40.48 0.10 0.14 

14 35.59 36.71 35.62 36.75 -0.03 -0.04 

15 35.59 37.12 35.62 37.16 -0.03 -0.04 

16 37.75 38.02 37.79 38.06 -0.04 -0.05 

17 38.39 38.61 38.36 38.57 0.04 0.03 

18 38.02 38.39 38.06 38.36 -0.05 0.04 

19 37.12 38.15 37.16 38.19 -0.04 -0.05 
 

 


