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1 Executive Summary 
Current technologies for monitoring coal mine dust do not provide real-time information about 
dust composition. For example, the continuous personal dust monitor (CPDM) reports dust 
mass concentration but not dust constituents; rather, to determine constituents, sample filters 
must be collected and analyzed post-hoc. Thanks to recent improvements in image processing 
and portable microscopy, solutions that were previously confined to the laboratory can now be 
used for near real-time field monitoring. In a previous project, we showed that optical 
microscopy with automated image processing could effectively distinguish between respirable 
sized coal and mineral particles—enabling a binary classification of dust. In the current work, 
we explored the possibility of expanding this approach to subclassify minerals, including silica. 
The work proceeded under three main tasks, as follows.  
 
Task 1: Build a dust image library. To characterize optical features associated with different 
particle types, a library of images was compiled using dust generated from four sources: high 
purity silica (quartz) and kaolinite powders were used to represent common silicates in coal 
mine dust; and a real clean coal material and real a rock dust product (i.e., high purity 
limestone) were used to represent the coal and rock dust constituents in coal mine dust. The 
images were used collect data on individual particles of different sizes and present under 
different levels of loading density within the image frame. An important precursor to this work 
was developing a sequential sampling and imaging method, and particle tracking algorithm, 
such that individual particles could be identified based on their material source. An image 
library was first built for respirable dust particles; and later the library was expanded to include 
somewhat larger particles (i.e., about 10-20 µm) as explained below. In all, images were 
capture for 1,148 unique sample frames (i.e., fields of view), which included a total of 97,729 
particles. 

 
Task 2: Explore particle features to support classification modelling. Using the respirable dust 
particle image library, it was determined that accurate silica classification was probably not 
feasible—regardless of limits on particle size or loading density within a frame. However, a 
model was developed for classifying particles into three classes (coal, silicates, and carbonates), 
which could enable respirable dust source apportionment in many mines. The model relies on 
pairs of images collected in plane- and cross-polarized light, and requires only one feature to 
classify particles (i.e., the mean greyscale intensity measured in both images).  

 
Notably, we initially expected that both particle size and loading density would impact accuracy 
of classification based on optical features. However, results using respirable sized dust 
suggested that loading density, within the practical range for imaging (i.e., where individual can 
be distinguished), is probably not important. On the other hand, particle size might be very 
important, with an increase in particle size showing increased potential for separation between 
silica and kaolinite. Indeed, this observation led us to expand the project work under Task 1 to 
image somewhat larger particles. Then, we were also able to expand the Task 2 to explore 
features that might be exploited for silica classification. Results indicated that using a 
combination of particle greyscale intensity and texture features might be favorable.   
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Task 3: Validate classification model. Work under this task was limited to respirable size 
particles due to the project timeline. To challenge the respirable dust source apportionment 
model, new samples were generated using the same clean coal and rock dust product as used 
previously; but instead of high purity silica and kaolinite—which might not be widely 
representative of silicates in coal mine dust—real roof rock materials from several mines were 
used. When using the model to apportion dust into three classes (coal, silicates, carbonates), 
results showed that the difference between the model predictions and actual portions for each 
class was less than 8% (by particle count).  
 
Three main accomplishments from this project should be highlighted: (1) In the respirable size 
range, a model has been developed for classification of particles (as coal, silicate, or carbonate) 
based only on their optical intensity in plane- and cross-polarized light image pairs. Envisioning 
a portable microscopy application where dust is deposited and imaged frequently, this could 
enable a real-time monitor for coal mine dust source apportionment in many operations. (2) 
While a simple method for silica classification using portable microscopy appears unlikely in the 
respirable size range, results for somewhat larger particles more promising, especially if both 
optical intensity and texture features are considered. Given that dust in the 10-20 µm range 
might still serve as a useful proxy for respirable dust in terms of composition, continued 
research focused on silica classification in this range appears prudent. (3) For exploration of 
particle features and development of classification models, reference measurements are 
critical—and identification of each particle a priori can optimally serve as an direct reference 
measurement. This is simple for images collected on dust samples with a single, high purity 
particle source; but the problem is quite complex for composite samples, which are necessary 
for interrogating the effects of particle interactions and testing model accuracy. Here, an 
innovative method was devised involving sequential sampling (dust deposition) and imaging 
events, with particle tracking between events. This approach could be used or adapted for 
other applications in the future. 
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2 Problem Statement and Objective 
Exposure to respirable coal mine dust (RCDM) can cause lung diseases such as pneumoconiosis, 
progressive massive fibrosis, and chronic obstructive pulmonary disease [1]–[3]. Ongoing or 
resurgent prevalence of occupational lung disease among coal miners in the US and elsewhere 
has underscored the importance of effective RCMD monitoring strategies [4]. Acknowledging 
the role of crystalline silica in many cases, a 2018 consensus report published by the National 
Academies of Sciences, Engineering, and Medicine called for development of real-time silica 
monitoring capabilities; it also called for an overall better understanding of dust sources, and 
development and/or application of technologies to enable broad monitoring of RCMD trends 
[4]. 
 
At present, real-time RCMD monitoring technologies only measure mass and particle 
concentrations, but not individual constituents. Indeed, there are only two types of devices 
currently certified as intrinsically safe for use in US coal mines: The continuous personal dust 
monitor (CPDM, such as the PDM3700; Thermo Fisher Scientific, Waltham, Massachusetts) is 
mandated for regulatory compliance monitoring (per 30 CFR part 74), and measures mass 
concentration of respirable dust using a tapered element oscillating microbalance. A device 
called the personal DataRAM (pDR-1000; Thermo Fisher Scientific, Waltham, Massachusetts) is 
also permissible—though it has been recently discontinued by the manufacturer—and 
measures particle concentration in the respirable range using a light scattering technique [5]. 
Despite significant interest, real-time monitoring of specific RCMD constituents like crystalline 
silica has not yet come to fruition. Beyond the considerable costs of research and development, 
and sort of niche context of coal mining environments, there is also the challenge of analytical 
sensitivity. For example, silica might only represent a small percentage of the total RCMD mass, 
which itself is relatively small. However, a viable alternative to monitoring specific constituents 
of RCMD could be to track larger components, which are often correlated. 
 
A prior proof-of-concept project, also funded by the Foundation (AFC316FO-74), envisioned a 
field-microscopy based monitoring solution (e.g., as shown in Figure 2.1). That research showed 
respirable-sized dust particles could be classified as either coal or minerals using just a pair of 
images [6]. To elaborate, after collecting dust particles onto a glass sampling substrate, static 
images were collected in both plane-polarized (PP) and cross-polarized (CP) light. The PP image 
was used to identify all particles in the image frame; and the CP image was used to identify 
mineral particles in the frame, since they typically illuminate based on their birefringence. 
Supposing samples can be collected and imaged on a semi-continuous basis, the approach 
could support a simple binary classification of RCMD (i.e., mineral versus coal). This could be 
valuable on its own in certain applications, like tracking the relative dust generation from 
mining rock strata versus the target coal seam at the production face [6]. Moreover, in an 
environment where silica content is understood to correlate well with the overall mineral 
component of RCMD, even a crude measurement of that component might be valuable if made 
frequently.  
 
 



5 
 

 
Figure 2.1. Conceptual illustration of coal mine dust monitor that uses a "cell-phone" microscope to count and classify particles. 
 
Nevertheless, an obvious improvement in microscopy-based particle classification would be the 
capability to distinguish between different mineral components, including silica. For this, our 
previous results suggested that two factors may be critical: particle size and particle loading 
density (PLD) in the image frame. Regarding size, finer particles are more difficult to classify 
since the display of optical properties is limited by the microscope resolution. Thus, size—
measured here as projected area diameter (PAD)—is inversely proportional to particle 
classification accuracy. Regarding PLD, this factor may affect the influence on particles on each 
other. For instance, particles that ordinarily have limited brightness (greyscale or color 
“intensity”) may appear brighter when in close proximity to other bright particles in an image 
frame.  
 
To further the optical microscopy dust monitoring concept, the ultimate aim of the current 
project was to refine a mineral sub-classification model, including for silica, which incorporates 
any necessary criteria to deal with particle size and loading density limits.  Work was split into 
three primary tasks: (1) building a particle image inventory; (2) exploring particle features to 
enable classification modeling; and (3) validation of the modeling.  
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3 Research Approach 
3.1 Task 1: Dust Image Inventory 
3.1.1 Dust Materials 
In many coal mines, the primary components of dust can be loosely associated with three 
primary sources: Coal is sourced from the target coal seam itself; silicate minerals such as 
aluminosilicates and silica are frequently sourced from the rock strata surrounding the coal 
seam; and carbonate minerals such as calcite are frequently sourced from inert ‘rock dust’ 
products (generally high purity limestone) that are applied to mitigate explosion risks [7]–[10]. 
While other constituents can be present in RCMD, such as metal sulfides or oxides, they 
typically do not account for a substantial portion of mass or particle count [9], [11]. Thus, for 
the current project we used four source materials to generate dust particles for imaging, 
feature analysis and model development: (1) a clean bituminous coal product (obtained from 
an industry partner) was used to represent coal; (2) MIN-U-SIL 5 or MIN-U-SIL 10 (US Silica, 
Katy, TX, USA), which are high-purity quartz powders were used as the source of silica particles, 
and (3) a high-purity kaolinite powder (Ward's Science, Rochester, NY, USA) was used to 
represent other silicates; and a real limestone rock dust product (obtained from an industry 
partner) was used as a representative source of carbonates. While the silica, kaolinite and rock 
dust were obtained as powders, the coal required milling to enable respirable-sized particles to 
be sampled. It was pulverized and sieved to obtain -230 mesh material as the source of coal 
dust. 
 
For model testing (see section 3.3), the same coal and rock dust material were again used as 
dust sources. However, to better represent the range of silicate minerals that might occur in 
RCMD (i.e., beyond pure silica and kaolinite) and determine if the optical characteristics of the 
silicates in real materials were comparable, three real rock strata materials were obtained from 
industry partners. The two materials designated as "ROM rock" represent the rock strata that 
was mined at the production face in two different mines (Mine 11 and Mine 14); these were 
pulled from the run-of-mine (ROM) material on the production belt and were pulverized and 
sieved prior to sampling of respirable-sized particles. The material designated as "bolter dust" 
was obtained directly from the dust collection system on a roof bolter machine at Mine 16. This 
material was already fine and required no preparation prior to respirable sampling. 
 
To determine the purity of the seven materials used in this work, respirable-sized particles of 
each material were analyzed by scanning electron microscopy with energy dispersive X-ray 
(SEM-EDX). Briefly, a sample of each material was collected in the lab using a $10-mm$ nylon 
cyclone at 2.0 L/min to discard over-sized particles. The dust was collected on 37-mm 
polycarbonate (PC) filters in closed styrene cassettes. A 9-mm subsection of each filter was cut 
and prepared for analysis by sputter coating with Au/Pd. Then, the computer-controlled SEM-
EDX routine described by Sarver et al. (2021) [9] was used to identify, size and collect elemental 
data on about 500 particles per sample in the 1-10 µm range. Per  Sarver et al. (2021) [9], 
particles were classified using their elemental content, and the mass percentage in each class 
was estimated using particle dimensions and assumed values for specific gravity. The SEM-EDX 
work was conducted using an FEI Quanta 600 FEG environmental scanning electron microscope 
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(ESEM) (Hillsboro, OR, USA). This microscope was equipped with a backscatter electron 
detector (BSD) and a Bruker Quantax 400 EDX spectroscope (Ewing, NJ, USA). The following 
parameters were used for  SEM-EDX analysis routines: 1000x magnification, 12.5 working 
distance, 15 kV accelerating voltage, and a spot size of 5.5 µm. The resulting mass distribution 
of particles is shown in Table 3.1. The carbonaceous class is generally interpreted as coal 
particles; silicates include silica, aluminosilicates and other silicates; and the carbonates include 
calcium and magnesium carbonates. 

 
Table 3.1. SEM-EDX characterization of respirable dust composition for each source material (C=coal, S=silicates, 

CB=carbonates) 

 
 
3.1.2 Sampling Design 
To assess the behavior of the optical properties of each particle type when present with other 
particle types, all samples were prepared as composites. Since silica was of the most interest 
for this project, the sampling was designed such that composites always contained silica plus 
one other particle type (i.e., kaolinite, rock dust or coal). As explained in the next section, we 
used a sequential sampling design whereby silica was first deposited on the sample slide, and 
then the other particle type was deposited.   
 
Because this project explored the effects of PAD and PLD on classification accuracy, it was 
important to collect data on a large number of image frames (i.e., there is one PLD value per 
frame) and a large number of particles (i.e., there is one PAD value per particle). Since we used 
a standard enclosure and a similar quantity of bulk feed material for each dust sampling event, 
the deposition time (i.e., the run time of the sampling pump) was effectively used to control 
PLD. On the other hand, PAD was controlled by the source materials and the sampling size 
collectors. For respirable dust sampling, we used a 10-mm nylon cyclone at a flow rate of 2.0 
L/min, which yields a top size of about 10 µm. Later, we also experimented with a different 
sampling apparatus to enable capture of somewhat larger particles (i.e., between about 10-20 
µm); this is described in more detail in section 3.4.  
 
3.1.3 Dust collection and imaging 
Dust sampling on the previous project was conducted such that, for each sampled collected on 
a glass substrate for optical microscope imaging, a replicate sample was collected on an 
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adjacent polycarbonate filter for reference measurements by SEM-EDX. However, this sort of 
reference measurement has inherent uncertainty since (a) the measurement is done on a 
replicate sample rather than the same sample being used for the optical microscopy, and (b) 
the SEM-EDX method itself may not be completely accurate (e.g., some coal particles could be 
misclassified as mineral particles). Thus, for the current project, we devised a new method for 
sampling which enables direct reference measurements. 
 
Briefly, particles from a single source are deposited in sequence onto a transparent, non-
birefringent, sticky surface and images are captured following each deposition event on the 
same frames (i.e., fields of view). The sticky surface is an acrylic double-sided tape (Maxwell 
Manufacturing, Hangzhou, China). It minimizes particle movement between deposition and 
imaging, such that individual particles can be tracked in the sequence of images. Figure 3.1 
shows the comparison of a glass slide and a double-sided tape under both plane-polarized (PP) 
and cross-polarized light (CP). The double-sided tape does not show signs of birefringence or 
light polarization in any particular direction, meaning it should not interfere with the basic 
premise for particle classification (i.e., to exploit differences in the birefringence or other 
optical features of different particle types). 
 

Glass slide 

 

Acrylic double-sided tape 

 

  
Figure 3.1. OM images of a glass slide (left) and acrylic double-sided tape (right) under PP light (top) and CP light (bottom). 
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Figure 3.2 shows a summary of the sample preparation method for two sampling stages. To 
begin, the double-sided tape is cut and mounted to a 22mm x 22 mm glass slide, and the slide is 
placed inside a filter cassette for dust loading. After the first type of particles (e.g., silica) has 
been deposited, the glass slide is removed from the cassette and fixed in a 3D-printed slide 
holder; the holder was printed to maintain an x-y reference point for the microscope stage, 
such that we can revisit the same frames for each imaging event. After capturing OM images 
under desired lighting conditions (i.e., plane and cross polarized light in reflected and/or 
transmitted mode), the glass slide is moved back to the cassette, and the next particle type is 
loaded (e.g., kaolinite). Then, the slide is placed back into the special holder for imaging again. 
This process can be repeated until all the desired particle types have been deposited and 
imaged (i.e., any number of stages). 
 

 
Figure 3.2. Dust collection and imaging procedure. 

 
3.1.4 Particle identification 
The major benefit of the sequential dust collection and imaging procedure shown in Figure 3.2 
is that—so long as particles stay in place once deposited—it allows for individual particle 
tracking. And if high-purity materials are used to generate the different dust particle types, this 
means the identity of each particle can be assigned with high confidence. 
 
A particle tracking algorithm was developed to automatically find and identify particle types 
based on images with sequential deposition of known particle types. Figure 3.3 shows an 
overview of the method used to track particles. First, all particle pixels are determined in a PP 
image containing multiple particle types deposited sequentially (e.g., silica + kaolinite), and a 
default class is assigned to the particles. After the particle’s x and y coordinates and circularity1 
are extracted, the process is repeated on the previous PP image(s) containing one less particle 
type (e.g., only silica). The algorithm tries to match each particle in the second image (e.g., only 
silica) with the most similar particle in the first image (e.g., silica + kaolinite) by minimizing the 
Euclidean distance between particles in the feature space. If the minimum distance does not 

 
1 x, y, and circularity were chosen as features for particle tracking working under the assumption that the particle 
location and shape should not dramatically change between sequential dust collection. 
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reach a certain threshold (determined by trial and error to maximize accurate classification), 
the default classification is applied. In the case of a sample with silica + kaolinite, particles that 
match between two sequential images are classified as silica, and those that only show up in 
the multiple-particle type image are classified as kaolinite. 
 

 
Figure 3.3. particle tracking methodology. 

 
Figure 3.4 shows examples of particle tracking achieved by comparing images of a given sample 
frame following each dust deposition event. (It is noted that very fine particles are not included 
in the particle tracking. Per the previous project, extraction of optical features from these 
particles is challenged by the OM resolution; and we have observed here that they are more 
likely to be displaced between loading events.) These examples clearly illustrate how the 
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identification of new particles in each image in a sequence can be used as a direct 
measurement of the particles of a specific type deposited in the immediately preceding loading 
event. 
 

 
Figure 3.4. Stage-one TPP images (top row) of three dust samples that were loaded with respirable sized silica (A, E, and I), 
followed by their TCP pairs (B, F, and J). Stage-two TPP images (preceding the bottom row) show respirable sized coal (C), 

kaolinite (G), or rock dust (K) particles, followed by their TCP pairs (D, H, and L). On TPP images, the particle boundaries have 
been determined for silica (orange), coal, kaolinite, and rock dust (blue) to show automated particle tracking between dust-

loading events. 
 
3.1.5 Image inventory 
For respirable particles, Table 3.2 summarizes of the total number of frames imaged and the 
total number of silica and other particles for each sample type (i.e., as determined by the 
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particle tracking algorithm). As mentioned, some preliminary work was also done to image and 
explore the optical features of somewhat larger particles, and that work is described in section 
3.4. 
 

Table 3.2. Dust image inventory for respirable size particles. 
Material Sample Frames Particles 
Silica 

93 
667 

Kaolinite 1769 
Silica 

37 
101 

Coal 1947 
Silica 

45 
319 

Rock dust 508 
Total 175 5311 

 
3.2 Task 2: Exploration of particle features 
3.2.1 Effect of PLD and PAD on respirable size particle features 
The sample frames/particles shown in Table 3.2 were used to develop a particle classification 
model for respirable sized particles. For each particle, the tracking algorithm was used to assign 
its “true” class (i.e., silica, kaolinite, rock dust or coal), and other features were also attached 
including: its measured PAD in the PP image; the PLD for the PP image it was captured in; and 
its greyscale intensity in both the PP and CP images. 
 
Particle classification was primarily based on two particle intensity features: The aggregated 
mean particle intensity (AMPI) computes the sum of the mean greyscale intensity of a given 
particle between the images in PP and CP light. The multiplication of the mean grayscale 
intensities (MMPI) instead multiplies the particle’s intensity between the two images. The AMPI 
and MMPI values were computed during particle feature extraction.  
 
Figure 3.5 shows the values of AMPI and MMPI as PLD and PAD increase. The solid lines 
indicate the average values of AMPI or MMPI for the particles in a specific class, while the 
shaded area in different colors represents the standard deviation. The x-axis represents the 
minimum PAD or PLD allowed in the dataset for calculating the mean and standard deviation. In 
other words, only particles with values greater than or equal to the specified value are included 
at each x-position. 
 
The results illustrate that, as expected, particle classification may be improved as PAD 
increases. However, somewhat unexpectedly, the influence of PLD is less pronounced. 
However, there is a particular point where PLD becomes so high that individual particles can no 
longer be discerned in the image. As PLD does not appear to affect particle characteristics (at 
least within the range where individual particles are still distinguishable by the particle tracking 
algorithm), subsequent analysis did not consider the influence of PLD. 
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Figure 3.5. AMPI (top) and MMPI (bottom) values for respirable sized particles as a function of PAD (left) and PLD (right). 

 
To explore the effect of PAD on particle classification, particles were split into “low” and “high” 
PAD bins using the median (50th percentile) as a threshold which was around 2.5 µm. Figure 3.6 
presents the distribution of AMPI and MMPI values, respectively, for all particles in the 
respirable dust image inventory binned into the low or high PAD. For silica, Figure 3.5 and 
Figure 3.6 show there is significant overlap with kaolinite across most of respirable range. 
Nevertheless, the results suggest that it should be possible to use AMPI and MMPI to classify 
particles into three major fractions: coal, silica + kaolinite, and carbonates. This is important 
because, if the silica + kaolinite class holds for a broader range of silicate minerals, such a 
classification scheme could be helpful for tracking the primary dust sources in coal mines. 
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Figure 3.6. Distribution of AMPI (top) and MMPI (bottom) values for respirable sized particles with low (left) or high PAD (right). 
 
3.2.2 Coal/silicates/carbonates classification model 
Recognizing the value of a source apportionment tool, a coal/silicates/carbonates classification 
model was built from the respirable dust image inventory (i.e., particles included in Table 3.2) 
using a two-step approach: first, an AMPI threshold was used to separate coal particles from 
total minerals; then, an MMPI threshold was applied to the total minerals to separate silicates 
from carbonates. Figure 3.7 shows the specific AMPI and MMPI thresholds, which were 
determined to minimize the differences between precision and recall across all three classes.  
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Figure 3.7. Distribution of AMPI (left) and MMPI (right) values for respirable size particles. The AMPI and MMPI thresholds 
indicated on the plots were determined to be optimal for the coal/silicates/carbonates model. 

 
Precision is defined as the ratio between true positives to all positive predictions made by the 
model 																						(Equation	1). For example, suppose the model predicts the class of 100 
particles as coal, but only 80 of those particles are actually coal while the other 20 are either 
silicates or carbonates. In this scenario, the number of true positives is 80 (items the model 
predicted as coal that were actually coal), and the number of false positives is 20 (items that 
the model predicted as coal but were actually silicates and carbonates). The precision in this 
case would be 80/(80+10+10) = 0.8. 
 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠																							(Equation	1) 
 
Recall is the ratio of true positive predictions to all actual positive instances in the dataset 
																													(Equation	2). For example, suppose the model predicts the class of 300 coal 
particles as follows: 220 coal particles, 30 silicate particles, 50 carbonate particles. In this 
scenario, the number of true positives is 220 (items the model predicted as coal that were 
actually coal), and the number of false negatives is 80 (items that were actually coal but the 
model predicted as either silicates or carbonates). The recall in this case would be 
220/(220+30+50) = 0.73. 
 
 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 																													
(Equation	2) 

 
Precision and recall are often in tension with each other. Increasing precision typically reduces 
recall and vice versa. This trade-off is inherent in many classification problems, and the choice 
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between optimizing for precision or recall depends on the specific problem and its 
requirements. For this work, we balanced the two metrics to assess the overall model 
performance. To achieve balance, we evaluated precision and recall values for each of the three 
classes. This resulted in a total of six values which were then used to calculate the standard 
deviation. Since our aim was to find a balance between precision and recall, a high standard 
deviation indicates greater difference between the values, while a low standard deviation 
indicates a better balance.  
 
We used a simple algorithm to find the combination of AMPI and MMPI thresholds which 
yielded the minimum standard deviation (11.22%). Using these thresholds, the classification 
model had a 13.5% misclassification rate for particles included in the respirable dust image 
inventory (Table 3.2). As illustrated in Figure 3.8, much of the misclassification is due to overlap 
between the silicates and carbonates classes. In essence, some rock dust particles had relatively 
low MMPI values whereas some silica and kaolinite particles had relatively high values. 
 

 
Figure 3.8. Confusion matrix displaying the overall count of observations in regards to true and predicted classes for the 

coal/silicates/carbonates model for respirable size particles. 
 
3.3 Task 3: Validate classification model 
The coal/silicates/carbonates model for respirable size particles was challenged with additional 
samples. Although the model was developed using particles generated from real coal and rock 
dust materials, the silica and kaolinite particles used might not widely represent the silicates 
typical of real rock strata encountered in coal mines. To test the performance of the model on 
dust particles generated from real rock strata, three materials obtained from industry partners 
were used. These included two samples of raw rock material that was handpicked from the run-
of-mine production belt in Mines 11 and 14, and one sample of material taken directly from the 
roof bolter dust collection box in Mine 16. The data in Table 3.1 confirms that the respirable 
size particles from these materials was primarily silicates.  
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Using the same sequential sampling and imaging approach described above, model validation 
samples were generated as shown in Table 3.3. For these samples, the rock strata particles 
(Mine 11, 14 or 16 sources) were deposited first, followed by either coal or rock dust particles 
(using the same source materials as for the model development samples). The particle tracking 
and identification methodology was again applied to assign a true class to each particle in an 
imaged frame, and to extract the particle’s feature data. 
 

Table 3.3. Mine materials used for validation of the coal/silicates/carbonates model for respirable dust. 
Material Sample Frames Particles 
ROM rock mine 11 

31 
651 

Rock dust 251 
ROM rock mine 11 

16 
131 

Coal 1176 
Bolter dust mine 14 

32 
345 

Rock dust 503 
Bolter dust mine 14 

28 
17 

Coal 535 
ROM rock mine 16 

31 
920 

Rock dust 434 
ROM rock mine 16 

15 
87 

Coal 99 
Total 153 5149 

 
When the coal/silicates/carbonates model was applied to the validation samples, the difference 
between the predicted and actual classes was no more than 15% (Figure 3.9). On average, the 
percentage difference across all results in Figure 3.9 was 4.4%. Across all particle classes, the 
average error was 4.4% for coal, 5.3% for silicates, and 3.3% for carbonates. The maximum 
observed difference was for the Mine 14 ROM + coal sample, where the model underpredicted 
the coal % and overpredicted the silicates %. This might be due to impurities in the coal 
particles, though the same effect was not observed for the Mine 11 ROM + coal sample, which 
had similar proportions of coal and rock strata particles. On the other hand, for the Mine 16 BD 
+ coal sample, the model somewhat overpredicted coal % and underpredicted silicates %. This 
could be due to inherent coal content in the bolter dust material used as the silicates source for 
this sample. The small carbonate % predicted in this sample could also be due to relatively 
bright silicate particles in the bolter dust material. Notably, the discrepancy between silicates 
and carbonates in the validation samples is quite low.  
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 Figure 3.9. Validation results for the coal/silicates/carbonates classification model using respirable size dust particles. Darker 

bars to the left in each comparisonrepresent the results of the classification model, whle lighter bars represent the results 
obtained by the particle tracking (PT) approach to assign a “true” identity to each particle. 

 
3.4 Preliminary Work on Larger Particles 
While classification of silica, specifically, was not feasible in the respirable size range, a close 
inspection of Figure 3.5 suggests this might be possible if somewhat larger particles are 
considered. (For that matter, the coal/silicates/carbonates model might also be improved with 
increasing PAD.) And, since the compositional distribution of particles in the 10-20 µm range 
might still be representative of the respirable range (e.g., see  [12]), we decided it was prudent 
to expand the work on this project to include a preliminary analysis of somewhat larger 
particles. The following sections describe this work. 
 
3.4.1 Modified sampling system 
To sample somewhat larger particles, we replaced the respirable dust cyclone with a series of 
two impactors that were obtained from AerosolWorks LLC (Figure 3.10). The impactors were 
designed based on the recommendations in [13] to accommodate the same pump flow rate 
used for respirable dust sampling (i.e., 2.0 L/min using the ELF pump). The impactors were also 
designed to hold a microscope slide with the sticky surface that served as the impaction plate, 
and to allowed easy access to retrieve samples between imaging stages (Figure 3.11). In theory, 
particles >40 µm (aerodynamic diameter) should be deposited on the first plate, with most of 
the finer particle bypass it. Then, the 10-40 µm particles should deposit on the second plate, 
with most of the finer particles bypassing it.  
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Figure 3.10. AerosolWorks LLC Impactor System. 

 
 

 
Figure 3.11. Impactor System Design. 

 
3.4.2 Particle size characterization of bulk materials 
While an impactor sampling system would ideally enable custom “cut” size(s), the actual 
distribution of particles is greatly influenced by both the cut sharpness and the distribution of 
the feed particles (i.e., based on the source material from which dust is being generated). No 
impactor (and indeed no size selector) can make a perfect cut in particle size, meaning some 
fraction of particles larger than the cut size will bypass the plate and some fraction of the finer 
particles will deposit on it; and dust source materials with skewed size distributions might still 
produce skewed sample distributions. Thus, it is important to characterize the particle size 
distributions for the source materials to provide some context for interpreting results. 
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Figure 3.12 shows the particle size distributions for the clean coal, silica, kaolinite, rock dust 
materials used for this project (i.e., the same materials shown in Table 3.1); these results were 
obtained using a MicroTrac S3500. The results indicate that most of the particles are smaller 
than 10 µm for all material types. The implication is that, even though the first impactor should 
cut at 40 µm and the second should cut at 10 µm, there are just so many fine particles that they 
will still represent a large fraction of the dust on either impactor stage. 
 

  

  
Figure 3.12. MicroTrac particle size distribution results for the four materials used to generate dust samples with larger-than-

respirable particles. 
 
3.4.3 Sample collection and Imaging 
Using the impactor sampling system, particles from each source material were collected on 
several slides mounted in the first and second impactor stages. While particles on the first stage 
slide were somewhat larger than those on the second slide, as expected, both stages had 
considerable fine particles (i.e., <10 µm) due to the size distribution of the source materials. To 
maximize the total number of each particle type that could be used to explore optical features, 
we decided to use both the first and second slide sample for this work. 
  
 
Table 3.4 shows the summary of image frames captured for each impactor stage and the 
corresponding number of particles detected for each material type. (It is noted that, due to 
time constraints, these samples only included particles from a single material). Figure 3.4 shows 
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the particle size distributions for each material based on the optical microscope imaging. The 
results are consistent with the particle size distribution obtained from the MicroTrac analysis.  
 

Table 3.4. Dust image inventory for exploring larger-than-respirable particles. 

Material Stage 1 
(40µm impactor) 

Stage 2 
(10µm impactor) Particles 

Coal 123 113 43340 
Kaolinite 104 126 10417 
Rock dust 33 109 10690 
Silica 127 125 22822 
Total 387 473 87269 

 
 

  

  
Figure 3.13. Particle size distribution determined from optical images of coal, kaolinite, rock dust, and silica particles collected 

with the impactor system. 
 
3.4.4 Feature Analysis 
Figure 3.14 displays the influence of particle size (PAD) on both AMPI and MMPI metrics. The 
results show that as the minimum PAD increases, the separation between coal, silicates, and 
carbonates increases—which indicates that coal/silicates/carbonates model could be improved. 
On the other hand, when just considering MMPI for mineral separation, there is no clear 
separation observed for the two silicates (i.e., silica and kaolinite) up to about 15 µm. While 
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some degree of separation appears to take place with PAD >15 µm, it must be noted that there 
are very few data points in this range (Figure 3.15). Again, this is attributed to the original size 
distribution of the source materials. 
 

  
Figure 3.14. Effect of increasing minimum particle size on particle identification. 

 

 
Figure 3.15. Percentage of particles included in the analysis for each particle type given a minimum PAD. 

  
Additional color and texture features were also explored to gauge whether subclassification of 
silicates may be feasible. These included the mean particle intensities for the red, green, and 
blue channels in both transmitted PP (TPP) and transmitted CP (TCP) lighting conditions. 
Moreover, the Gray-Level Co-Occurrence Matrix (GLCM) was considered to evaluate texture 
features. The GLCM is a statistical method that considers the spatial relationship of pixels in a 
grayscale image; it was used to assess features such as contrast, correlation, uniformity 
(sometimes called “energy”), and homogeneity. The results are shown in Figure 3.15. While 
separation between silica and kaolinite is still not complete for any of the additional features, 
there is some visible separation between the two particle types under the TPP lighting 
conditions (both combined and in the RGB channels) and based on the uniformity feature.  
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Figure 3.16. Color and texture metrics as a function of particle size (PAD). 
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3.4.5 Feature Interaction 
Based on the above results for each individual feature, we decided to explore whether 
interactions between the features have any additional potential for silica classification. 
Interactions between every pair of features in the dataset were analyzed using five different 
operations: addition, subtraction, multiplication, division, and exponentiation. A total of 678 
interaction variables were obtained after filter the data for any undefined values (e.g., such as 
resulting from division by zero or numbers beyond practical limits). 
 
Analysis of the results indicated that only the interaction of intensity features with texture 
features such as uniformity yielded separation between silica and kaolinite (see Figure A1 in the 
Appendix). Separation was most evident when the particle TPP intensity values (mean for all 
color channels, or for individual RGB channels) were divided by uniformity values. Figure 3.17 
shows the results for the mean TPP intensity divided by uniformity as a function of PAD. Even 
for a minimum PAD of about 10 µm, the plot shows that silica and kaolinite might be separated.  
 

 
Figure 3.17. Interaction between mean grayscale intensity and uniformity revealing slightly better separation between silica and 

kaolinite particles as PAD increases. 
 

4 Research Findings and Accomplishments 
The work on this project resulted in three main accomplishments as discussed below. 
 
Respirable coal mine dust source apportionment model. In the respirable size range, a model 
has been developed for classification of particles (as coal, silicate, or carbonate) based only on 
their optical intensity in TPP and TCP image pairs. Envisioning a portable microscopy application 
where dust is deposited and imaged frequently, the model could enable a real-time monitor for 
coal mine dust source apportionment in many operations. This is because the three dust 
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components that can be classified are often associated with the three primary dust sources in 
mines: coal, the rock strata surrounding the coal, and rock dust products which are applied to 
mitigate explosibility hazards.  
 
Identification of optical particle features with potential for silica classification. While a simple 
method for silica classification using portable microscopy appears unlikely in the respirable size 
range, results for somewhat larger particles appear promising. Specifically, we found that a 
combination of light intensity and texture features might be used to separate silica from other 
silicates if particles are in the 10-20 µm range—which might still be representative of respirable 
dust in terms of composition.  
 
Development of a sequential sampling and imaging method with particle tracking. To enable 
direct identification of individual particles based on known dust sources, we devised an 
innovative method involving sequential sampling (dust deposition) and imaging events, with 
particle tracking between events. This improved the experimental approach used to develop 
classification models by removing the need reference measurements using alternative methods 
that might introduce uncertainty. The general approach devised here could be used or adapted 
for other applications in the future.  
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5 Publication Record and Dissemination Efforts 
To date, three conference presentations related to this project have been made and one more 
has been accepted. 
 

1. Santa, N., Keles, C., Saylor, J., & Sarver, E. (Dec 9, 2021) Optical Light Microscopy: A Novel 
Tool for Near Real Time Coal Mine Dust Monitoring. In 2021 International Future Mining 
Conference. Online. 

2. Santa, N., Keles, C., Saylor, J., & Sarver, E. (Mar 1, 2022). Silica Classification in Respirable 
Coal Mine Dust Using Optical Microscopy and Image Processing. In 2022 SME Annual 
Conference and Expo. Salt Lake City, UT. 

3. Santa, N., Keles, C., & Sarver, E. (Feb 27, 2023). Refining Respirable Size Silica Particle 
Identification and Subclassification for Semi-continuous Monitoring Applications. In 2023 
SME Annual Conference and Expo. Denver, CO. 

4. Santa, N, Sarver, E. (Feb, 2024). Optical Microscopy as the Basis for a Coal Mine Dust 
Monitor for Simple Source Apportionment. In 2024 SME Annual Conference and Expo. 
Phoenix, AZ. 

 
Moreover, one journal paper has been submitted for peer review and another is in draft: 
 

5. Santa, N., Sarver, E. (n.d.) Optical Microscopy as a Novel Tool for Respirable Coal Mine 
Dust Source Apportionment, Coal Science and Technology (submitted).  

6. Santa, N., Sarver, E. (n.d.) Effect of Particle Size and Loading Density on Coal Mine Dust 
Classification by Polarized Light Microscopy (in draft).  
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6 Conclusions and Impact Assessment 
We envision a semi-continuous monitor that uses optical microscopy and image processing to 
classify coal mine dust. While prior work showed that a binary classification between coal and 
minerals was possible, on the current project we sought to explore potential for mineral 
subclassification. In the respirable range, results with lab generated dust from real coal mine 
materials suggest that minerals can be separated into silicates and carbonates, such that a 
simple coal/silicates/carbonates classification scheme could support dust source 
apportionment in some mines. Having this capability in real-time could support a better 
understanding of trends with changing mining conditions or dust controls. And, in mines where 
correlations can be established and periodically validated, tracking the silicates component of 
respirable coal mine dust could serve as a proxy for silica – especially if periodic validation can 
be performed via conventional sampling and post-hoc laboratory analysis.  
 
Here, work with particles that are somewhat larger than respirable also suggested that silica 
classification, specifically, could be possible. This is very exciting because—despite the fact that 
real-time silica monitoring is a top priority in the occupational health and safety field—few 
analytical methods have shown promise as the basis for a practical devise. However, we 
acknowledge that the current work is quite preliminary since the samples were all generated in 
the laboratory from a limited number of source materials.  
 
  



28 
 

7 Recommendations for Future Work 
Future work to support the envisioned concept for a coal mine dust monitor should include: 

• More work on 10-20 µm particles to validate the silica classification results. New work in 
this area should use dust generated from additional source materials, and it is also 
necessary to experiment with composite samples. 

• Translating the lab-based research to build and test a field prototype. This should 
include all necessary components for sampling and dust deposition (e.g., size selector, 
pump, sample substrate), microscopic imaging (lenses, polarizer and analyzer, camera), 
and image processing (processor). Further, it should consider options for achieving a 
semi-continuous operation (i.e., how can the sample substrate be cleared or replace in 
between sampling and imaging events?) 
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Appendix 
 

    

    

    
Figure A1. Color or texture metrics divided by uniformity as a function of particle size (PAD).  


