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1.0 Executive Summary  
First responders face a myriad of challenges when searching for personnel in a disaster 
scenario. Possibly the most acute challenge is the complete lack of visibility owing to a 
combination of dust, smoke, and pitch-black conditions. Not only does the opacity of the air 
limit the responder’s ability to navigate efficiently, but it also prevents responders from 
identifying a hazardous condition until in close proximity. Moreover, the complex environment 
compounds the difficulty of navigating and searching the area. Enhanced perception and 
localization technologies that enable rapid and safe disaster response could mitigate the 
mine rescue team’s risk and reduce response times. 

We provide these responders with situation awareness by lifting the veil of the conditions and 
providing them with an augmented reality display of the surrounding environment. By 
leveraging the LiDAR sensor and thermal camera, we constructed a 3D representation of the 
space in real-time. This is visualized on a lightweight wearable display, HoloLens, allowing the 
responders to see around their environment as if it were well-lit and smoke-free. Depending on 
the emergency setting (evacuation or search and rescue), visualization methods such as 
color, shape, etc. help responders in different ways.  

 
(a) 
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(b) 

 
(c) 

Figure 1: Visualization options of (a)single color mapping, (b) thermal mapping, (c) depth 
mapping. 

The resulting system integrates LiDAR, Thermal Camera, and Microsoft HoloLens onto a 
wearable platform such as a hardhat and a belt or backpack. The processing and power 
storage are integrated into a waist-belt mounted package with a cap-lamp style cable 
connecting the two. This enables the user to look around with minimal impact on their motion. 
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Figure 2: Integration of hardware: Thermal camera, LiDAR, IMU, and HoloLens on hard hat 

The resulting system is tested internally and helps users navigate in a pitch-black underground 
mine tunnel in Edgar Mine. Initial results yield that for an evacuation scenario, depth mapping 
is more helpful than single color or thermal. On the other hand, for search and rescue missions, 
thermal camera yields faster response time from the users. To extend the usability and 
understand which visualization option is better, a user study is designed and gets the “IRB 
Exempt” status. Initial tests are conducted with five people in pitch-black tunnels with some 
obstacles and heat sources to mimic human presence. Figure 3 shows the training route.  

 
With headlamp, normal walking speed and in normal operational conditions, it took 2 minutes 
and 40 seconds to finish the route. The same route in pitch black took 5 minutes and 10 
seconds on average. It should be noted that the test subjects have never been on this route 
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before. They passed the route with the AR visual enhancement for the first time and then went 
with a headlamp. Moreover, these test subjects have only been in an underground mine less 
than 5 times in their entire life. Although additional subjects and tests needed to conclude a 
statistical results, we are optimistic that with our design even an untrained person can find their 
way out. 

In the long run, the technology will enable faster, safer, and more effective disaster response 
for mine rescue operations. Not only will it allow the responders to search the environment 
more rapidly, but it will also enable them to detect unexpected hazards before they become 
imminent threats. Moreover, the utility of the developed system is far-reaching, for example, 
for first responders searching for smoke-filed burning structures. One day, it may also enable 
autonomous systems to navigate these occluded environments effectively and enable 
disaster response to focus on the rescue in search-and-rescue. 
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2.0 Problem Statement and Objective 
After natural or man-made disasters, saving lives is a time-critical mission [1]. While racing with 
the clock, search and rescue teams tackle environmental difficulties [2]. One of the most 
challenging locations is subterranean spaces such as tunnels, mines, or caves. These locations 
are not only GPS-denied, but also have low to no visibility with uneven surfaces [3]. Moreover, 
due to its challenging nature, many devastating disasters occur in underground mines; hence, 
advanced indoor navigation solutions are needed [4]. In emergencies, the environment 
encountered by the mine rescue personnel is often visually occluded with dust and smoke to 
the point where visual perception is completely compromised, and the vision is restricted to 1-
3 feet [5].  

Traditional methods to guide emergencies in an underground mine include hand lines, pin-
wheels, and strobe lights [6]. Using a green laser pointer, a more active approach has been 
shown to provide some situational awareness as its beam can penetrate the theatrical smoke 
enough to indicate the back and rib locations [5]. Another attractive option is thermal 
imaging, which can see through dust and smoke with the examples of firefighters and military 
operations where personnel traditionally use thermal imaging to assist with smoke-occluded 
situations [7].  

In addition to seeing through dust and smoke, digital recreation of world in real time is another 
challenge not only in underground mine search and rescue operations, but also in the robotics 
community. After a tragic disaster, such as rock falls, roof collapse, or explosions, the 
underground map changes. Therefore, real-time 3D world construction is a necessity for safer 
and faster rescue operations [8]. The technology proposed to overcome this is an extension of 
the robotics area of simultaneous localization and mapping (SLAM) [9]. This approach uses 
sensor data to both reason on what the surrounding area looks like as well as where the 
sensors are in that area. SLAM solution has recently transitioned from the laboratory to the 
commercial sector; however, it is generally tested under ideal conditions, such as light and 
structured spaces [10]. Most SLAM methods rely directly on the data gathered either by 
making the data the ground truth and fitting directly to it (which is computationally expensive) 
or extracting landmarks and incorporating them into the model to reason on, which is less 
effective in underground environments [11]. Even with the recent advancement of sensor, 
battery, and processing power technologies, building an effective system that has the 
capability of seeing through pitch-black conditions with real-time world constructions has its 
limitations [12,13].  

Recent advancements for mapping, navigation and object detection in underground 
environment were competed in the Defense Advanced Research Projects Agency (DARPA) 
Subterranean Challenge (SubT) in 2021 [14]. Although the main goal of the SubT was the 
autonomy of search and rescue robotics[15], DARPA pushes the limits of technologies that 
could be ready in 15 years and tries to make them happen in seven [16]. 

Underground search and rescue operations currently rely on humans and likely will for the near 
future as we look at the DARPA SubT challenge. Therefore, restoring visual information to first 
responders in emergency situations will enable them to search the environment more safely 
and more efficiently, as they will be able to scan an area for hazards, and will provide 
personnel with better situational awareness [17]. In this respect, augmented reality (AR) 
interfaces have great potential to leverage the search and rescue efforts in an emergency 
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evacuation. Yet, the AR interface for real-time perception enhancement in underground mine 
search and rescue operations has not been explored sufficiently. 

Given the shortfalls in mining operations, this work focuses on developing a hybrid human-
machine system for solving situation awareness problems in pitch-black and smoke-filled 
underground mines. The proposed methodology is to combine thermal imaging, LiDAR, and 
AR. This aims to penetrate the smoke by leveraging thermal imaging while having real-time 
world construction with LiDAR and visualizing it on an AR device. By having this hybrid system, 
we aim to provide an AR image of the surrounding environment when pitch-black or visually 
occluded by smoke, dust, or other small particulates. This system is structured around an AR 
device, namely, Microsoft HoloLens, which will display an image to the user that depicts the 
surrounding environment in a meaningful way, but could be extended to any appropriate AR 
platform. This map enables the user to explore the environment with continuous improvements 
in fidelity as they maneuver. Lastly, the effectiveness of the proposed system is evaluated in an 
experimental underground mine. 

Our study fills the necessity of having vision in pitch-black conditions during emergency 
evacuations in underground mines with a changing environment for search and rescue 
teams.  
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3.0 Research Approach 
The real-time visual enhancement will enable the user to explore the environment with 
continuous improvements in fidelity as they maneuver. To accomplish this goal, a three-step 
approach is utilized.  

1. Hardware: We tried to find the optimum hardware design by thinking about the effects 
on the agility of the users, power requirements throughout the escape route, and 
compatibility with each other. 

2. Software: We built custom packages for each hardware to talk (publish and subscribe 
data stream) to each other by utilizing off-the-shelf software.  

3. User Study: We aim to create an effective visualization of the voxelated spaces for users 
in an augmented reality setup. This aim shows how to do it effectively while avoiding 
information overload. 

The steps show the evolution progress from proof of concept to prototyping to proof of use 
case scenario. Details of each step are given in sub-sections.  

3.1 Hardware Design 
This system is composed of multiple components and, as such, is run across various hardware. 
The hardware includes a NUC computer, Omnicharger, Krisdonia battery, hardhat, HoloLens, 
LiDAR, and thermal camera.  

At the time of the hardware selection, there were two main AR device manufacturers, namely 
Magic Leap and Microsoft HoloLens. Both devices had their APIs and permits development 
mode. However Magic Leap was not allow to override of its built in light sensor [17] so that we 
choose Microsoft Hololens. Both thermal camera and LiDAR sensor is chosen based on their 
proven performance.  Portable batteries, Omnicharger and Krisdonia, are chosen for their 
price performance and matching required output sockets. Descriptons and versions of each 
hardware is given in Table 1. 

Table 1: List of Hardware 

Hardware  Description Version 

AR Headset Microsoft Hololens 1 

LiDAR Sensor Intel Real Sense L515 

Thermal Camera FLIR  A70 

Hardhat OSHA compliant  - 

Portable Battery Omnicharger, Krisdonia - 

NUC Portable Computer Intel custom build  

 

3.2 Software Design 
The software include Linux, Windows, Unity, and Robot Operating System (ROS). Descriptions 
and versions are given in Table 2.  

Table 2: List of Software 
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Software  Description Version 

Game Engine Unity 2019.4.xxx 

ROS Robot Operating System Melodic Morenia 

Windows Operating System 11 

Ubuntu Operating System 18.04 

Sensor data collection in the form of LiDAR and thermal images collects and transmits 3D point 
data to scripts that manipulate and transform the data into another format by ROS bridge by 
NUK. Once the data has been converted, it is sent across a WebSocket on a local network to 
then be visualized in the Unity Editor and deployed into HoloLens. The images are color coded 
with thermal data. Unity is the development platform that allows the installation of the 
application on the HoloLens. Figure 3 shows a high-level overview of the data flow. 

Sensor Data 
Collection 

 ROS 
Integration 

 Unity  HoloLens 

Figure 3: High level overview of the data flow 

The sensors are required to be integrated into the C++/ROS application. The steps include 
creating a custom build image, developing a ROS node to parse incoming data, and 
customizing a startup script to configure the sensor data into HoloLens. 

The main task for LiDAR integration is to develop a ROS node, a sub-application that runs 
within the main application, allowing the sensor fusion algorithm to incorporate with the post-
processed data. Each of these packets contains data from one frame, where a frame is 
defined as the processed signals from a set of returned chirps. These values are collected for 
each frame and provide a snapshot of the sensor’s current surrounding environment. 

Another sensor data is coming from an IMU. This 9-axis inertial sensor is mounted to the 
backside of the helmet and the data stream is again fed from another ROS node to Unity. 
Ellipse-N INS from SBG Systems is utilized for its size, durable design, and highly accurate 
rotational accuracy. The device is calibrated and tested the sensor with its current ROS 
software driver to ensure its integration. It should be noted that not all ROS versions can 
facilitate these sensor flows. ROS Melodic Morenia is used in this study.  

Lastly, a ROS node is developed to parse incoming data from the FLIR A70 thermal camera. 
This incoming data has been directly integrated into the visual stream to afford real-time pixel 
coloration according to temperature by ROS bridge to Unity. 

Unlike a traditional operating system, ROS is a set of software libraries and tools that assist in 
building intercommunicative applications. This allows to freely communicate the point data 
between the LiDAR, thermal camera, Unity and HoloLens while also performing other 
computational tasks. A Linux machine was used to run the ROS network communication layer, 
process the positional point data and communicate it across a local network. A ROS network 
consists of nodes and topics. Nodes are executable scripts whereas topics contain the data 
being communicated. Nodes use this data in a sort of Subscription/Publication service. The 
ROS network that was implemented consists of several nodes and topics. The program that 
receives data from the LiDAR, IMU and thermal camera (/os1_node in Figure 2) publishes the 
topic “os1_cloud_node” which has a “point” component. This data is in the PointCloud2 
Object (PCL2) format. Another node, “ouster_filte”, subscribes to the “os1_cloud_node/points” 
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topic and processes the point on LiDAR data, extracting x,y,z positions for each point and 
converts those positions into pixels of an image that is published to the “out_image topic”. This 
is then sent across the rossbridge_websocket. Both the Unity Editor on the Windows machine 
and the HoloLens can then subscribe to this WebSocket to receive the image containing the 
positional data.  

 
Figure 4 RQT Graph displaying a visual representation of the ROS network.  

In Figure 4 ROS network is given. Nodes are circled, whereas topics are boxed. The arrows 
indicate the subscription/publication of data. 

Similar to developing apps for a mobile device, developing an application on an AR device 
such as the HoloLens requires the use of an editor or development environment. As an 
emerging technology, AR development editors are quite limited. However, popular game 
development editors support the development of AR devices. As such, Unity is utilized for the 
visualization development of this application.  

3.3 User Study 
After finding optimum hardware and software combination, the last step is to find how to 
visualize the data stream as it is only numbers and letters. To solve this problem, we ask “What 
are the best ways and visual variables to visualize reconstructed data in augmented reality for 
first responders?” This question hypothesizes that AR interface with multi-colored reconstruction 
with depth data might help decrease response and assessment time, hence cognitive load. 
This will result in faster search and rescue operations.   

Visual variables are one of the cornerstones of data visualization. The first categorization of 
visual parameters was proposed in 1967 by Bertin as size, color, orientation, texture, shape 
value (brightness), and position (dimensions on the plane) [18][19]. In addition to Bertin’s visual 
variables, MacEachren suggested three more visual parameters: crispness, resolution, and 
transparency [20]. In 1994, Wolfe discussed the effects of complexity (referred to as cluttering) 
in visual search and the increase in cognitive load [21]. In 2014, Zhang et al. discussed the 2D 
visual variables compatibility and limitations in 3D visuals [22][23].  

Similar to studies on 2D and 3D compatibility of visual parameters, VR and AR compatibility 
also needs to be investigated. Computer Human Interaction (CHI), one of the most prestigious 
[24] conferences in human-computer interaction, published a workshop paper at the CHI2021 
conference as “Grand Challenges in Immersive Analytics.” In this paper, the gaps were 
discussed by 24 different groups of professionals in their fields of expertise. The researchers 
pointed out 17 current key challenges and gaps for the future of the research field. These 
challenges can be sorted into four different categories, namely, “spatially situated data 
visualization,” “interacting with immersive analytics systems,” “collaborative analytics,” and 
“user scenarios and evaluation” [25]. As stated under spatially situated data visualization, 
designing guidelines for visualization and understanding human senses and cognition in 
situated contexts are among the two challenges. Inappropriate usage of visual variables 
might result in users’ misinterpreting critical data [26]. 
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Laha et al. studied the effects of visual variables of head tracking, field of regard and 
stereoscopic rendering for volumetric data interpretation. They found that field of regard has a 
positive impact on tasks but other parameters have mixed effects [27]. Adams et al. studied 
shadow/shadowless and position (floating/grounded) variables for the depth perception of 
users in augmented reality. They found that current devices make users underestimate the 
distance regarding the visual variable but the position of the object and the shadow influence 
users’ decisions [28]. Arjun et al. evaluated the effects of size, orientation, opacity, and shape 
for chart data understanding. They found that accuracy is affected the most by size and 
color. Moreover, cognitive load is affected the most by size, opacity and brightness [29].  

A saliency map ©s a computer vision term that highlights visually striking parts of the image for 
the human eye, which was first proposed by Koch and Ulman [30] and implemented by Itti et 
al. [31][32]. Although many variations of saliency mapping algorithms exist, from a high-level 
perspective, these algorithms consider visual features including but not limited to color, 
orientation, location, and edges [33], and create a 2D image that represents the predictions 
of human eye movement [34]. For viewpoint selection, visualization, learning, assessment, and 
monitoring, keeping the correct saliency is essential [35][36]. Failure to develop correct salient 
regions in visualization might result in increased cognitive load, distraction, and overlooking 
critical data [37][38][39][40]. 

Since emergency response is a time-critical mission, appropriate visualization needs to be 
employed. Our aim is to investigate and benchmark visual variables for underground 
augmented reality visual enhancement. 

Initial tests are done internally with the research team and human subject research design is 
submitted to the institutional review board. The application is approved as exempt study 
under 45 CFR 46.104(d)(3) (July 19, 2018)  - https://www.ecfr.gov/on/2018-07-19/title-45/part-
46/section-46.104#p-46.104(d)(3) 

3.3.1 Initial Tests 
Participants signed an informed consent form prior to the study. Participants then filled the 
background questionnaire that captured their experience with AR and underground mining. 
After the background questionnaire, we introduced the hardware and explained the 
experiment. Training route is given in Figure 7. We then gave a quick training on underground 
mining, equipment, and safety. After finishing the AR experiment we asked them the post 
survey questions which is given in Appendix A. 

We recruited 5 voluntary participants for our study. There were 1 female and 4 males with ages 
ranging from 21 to 30. Only 2 of the participants self-reported having previous AR experience 
but not regular users. All participants had been in an underground mine before but not more 
than 5 times. They self reported that they have never been in the training route of the mine 
before.  

We analyzed the results based on both quantitative and qualitative approaches. For the 
quantitative analysis, we considered participants' total time travel and the ability of noticing 
hot objects (humans, cross sections. For the qualitative analysis, we took users' responses to the 
post questionnaire into account. 

Quantitative analysis yields finishing the route in 2 minutes and 40 seconds versus 5 minutes 
and 10 seconds in average with head lamp and AR enhancement, respectively.   

https://mines0-my.sharepoint.com/personal/apetruska_mines_edu/Documents/Active%20Project%20Shared%20Folders/Alpha_Augmented_Reality/Project%20Administration/Anual%20Reporting/2023/%20https:/ww
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Figure 7: Training route 

To be noted that the tests are done in pitch black conditions. We test the route with heavy 
smoke fill (hard to breathe) and thin smoke ( cannot see with headlamp but can breathe). 
Figure 8 shows a snapshot of the tunnel with heavy smoke and thin smoke and how they 
appear in AR glasses.  
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a) Heavy Smoke b) Thin smoke 

Figure 8: Heavy smoke and thin smoke snapshots 

For the qualitative analysis, we asked the NASA Task Load Index (TLX) questions (Appendix A) 
to measuring a subjective mental workload assessment. It rates performance across six 
dimensions to determine an overall workload rating. The six dimensions are as follows:  

1. Mental demand: how much thinking, deciding, or calculating was required to perform the 
task. 

2. Physical demand: the amount and intensity of physical activity required to complete the 
task. 

3. Temporal demand: the amount of time pressure involved in completing the task. 

4. Effort: how hard does the participant have to work to maintain their level of performance? 

5. Performance: the level of success in completing the task. 

6. Frustration level: how insecure, discouraged, or secure or content the participant felt during 
the task. 

Users are self reported their scores ranging between 1 to 21. Mental demand results are 
ranging 17 to 21, physical demand results are ranging between 15 to 21, temporal demand 
results are ranging between 15 to 21 effort results are ranging between 16 to 21, performance 
results are ranging between 11 to 19 and lastly the frustration results are 21 for all participants.  

To sum up; although we can not have enough participants to conduct a statistical analysis, 
the research findings and conclusions are given in Chapter 4 and Chapter 6 respectively.  
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4.0 Research Findings and Accomplishments 
The resulting system integrates LiDAR, IMU, Thermal Camera, and Microsoft HoloLens onto a 
wearable platform such as a hardhat and a belt or backpack. The processing and power 
storage are integrated into a waist-belt mounted package with a cap-lamp style cable 
connecting the two. This enables the user to look around with minimal impact on their motion.  

Initial results yield possible visualization varieties. These visualization options are given in Figure 4 
as a) single color mapping, b) thermal mapping, c) depth mapping.  

 
(a) 

 
(b) 
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©) 
Figure 5: Visualization options of (a)single color mapping, (b) thermal mapping, (c) depth 
mapping. 

Among the visualization options, depth mapping with a thermal camera yields the most robust 
results. Color schemes to provide depth perception information are added as a user option, 
where red schemes indicate closer objects and green schemes indicate farther objects 
(Figure 5). 

The display capabilities of the system have been expanded to include several different shapes 
that have tradeoffs in terms of both point density and fidelity. Each of these display variants 
can be generated directly from the Octree data and evaluated as one of the following: 

1) Triangulated mesh, where the point-cloud is taken and the gd3 algorithm from the point-
cloud library [41] is used to generate a tessellation, 

2) Square surface patch, where the point cloud is packed into the Octree that tracks a 
Gaussian representation of the points measured in each voxel. A square patch is then 
generated that represents the average surface for that voxel, 

3) Triangle surface patch, where the point cloud is packed into the Octree that tracks a 
Gaussian representation of the points measured in each voxel. A triangular patch is 
then generated that represents the average surface for that voxel, 

4) Cube occupancy grid, where the point cloud is packed into the Octree, and the voxels 
that contain points are extracted and displayed to the user,  

5) Cuboid surface representation, where the point cloud is packed into the Octree that 
tracks a 3D Gaussian representation which is converted into a rotated and scaled 
cuboidal shape,  

6) Ellipsoid surface representation, where the point cloud is packed into the Octree that 
tracks a 3D Gaussian representation which is converted into an ellipsoid according to 
the standard deviations in each direction for display.  

The number of vertices and triangles with 2D performance of each display type is given in 
Table 3.  

  



16 

 

Table 3: Display types with their respective number of vertices and triangles, and performances. 

Display Type Number of 
Vertices 

Number of 
Triangles 

Qualitative 2D 
performance 

Visualization 

Triangulated mesh: 
Triangle tessellation 
using gd3. Provides a 
smooth surface but is 
unpredictable between 
scans.  

1,253 1,671 Poor-Good 

 

Square Surface Patch 
Square surface 
representation requires 
minimal triangles and 
vertices and provides a 
reasonable level of 
fidelity. 

996 1,992 Good-
Excellent 

 

Triangle Surface Patch 
Triangle surfaces 
minimizes the number of 
triangles to send and 
voxels, but is 
disconnected and only 
provides moderate 
fidelity. 

476 1,428 Good 
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Cube Occupancy Grid: 
Cube occupancy. Very 
consistent but overly 
conservative and blocks 
much of the view. 

5,712 3,808 Poor 

 

Cuboid Surface 
Representation: Cuboid 
provides a good view of 
the surroundings but 
requires a lot of vertices 
and triangles. 

3,070 2,456 Good 

 

Ellipsoid Surface 
Representation: Ellipse 
representation has the 
best fidelity (note the 
hanging pipes clearly 
visible in the upper right) 
but requires a lot of 
vertices and triangles. 

9,600 5,760 Excellent 
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In addition to the various types of representations available, there are additional visualization 
capabilities and limitations to consider in the design process. According to the specifications 
listed in the Intel RealSense lidar camera range, the range is approximately 9 meters or 30 
feet[42]. However, utilizing a different sensor could potentially extend the range. It is important 
to note that increasing the visualized range may have an impact on the tunneling effect, 
potentially decreasing the user's perception and overall understanding of the visuals. During 
internal testing, the depth colors were found to be optimal based on the current tunnel size 
and sensor configuration. However, it is possible to programmatically adjust the range and 
colors as desired using Unity. 

After choosing the visualization method and building the application into HoloLens, the 
proposed system is tested in an experimental underground mine called Edgar Mine, located in 
Idaho Springs, Colorado. The final run snapshots are given in Figure 6 that shows the user 
perspective.  

  
Figure6: Example snapshot of the enhancement 

Finally, it is worth mentioning that the current configuration is capable of operating 
continuously for over an hour without requiring a recharge. It is important to note that the 
visualizations have a refresh rate of 50 Hz, which has been optimized to prevent any lag when 
the user makes sudden movements (e.g.; walking bristly, jumping and sudden head shake). 
Although the maximum refresh rate for HoloLens is 60 Hz, increasing it to this level does not 
result in a significant improvement in perception and instead reduces battery life. Current 
configuration and tests are done with cable connections for both data and power use. The 
system might require design modifications to provide a permissible system acceptable for use 
in mine rescue operations. Such as using this type of batteries might not be allowed in coal 
mines.   
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Conference: SPIE AR | VR | MR 2024 (Accepted as conference proceeding) Underground 
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Conference: SME Mine Exchange 24 (Accepted as conference proceeding) 
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Sebnem Duzgun, Andrew J. Petruska, 

Journal: AI, Computer Science and Robotics Technology, Special issues: SEARCH AND RESCUE 
ROBOTICS (Under Review) Real-time perception enhancement in obscured 
environments for underground mine search and rescue teams Doga Cagdas 
Demirkan, Ava Segal, Abhidipta Mallik, Sebnem Duzgun, Andrew J. Petruska, 

Journal: Mining, Metallurgy & Exploration - Springer (In Process)  
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Jurgen F Brune. “Analysis of SLAM-based Lidar Data Quality Metrics for Geotechnical 
Underground Monitoring.”, Mining, Metallurgy & Exploration, 2022 

Journal: Lukas Fahle and Andrew J. Petruska and Gabriel Walton and Jurgen F. Brune and 
Elizabeth A. Holley, “Development and Testing of Octree-Based Intra-Voxel Statistical 
Inference to Enable Real-Time Geotechnical Monitoring of Large-Scale Underground 
Spaces with Mobile Laser Scanning Data”, Remote Sensing, 2023 

Invited Talk: NIOSH - Mine AutomationCommunity of Practice (CoP), Augmented Reality for 
Search and Rescue in the Underground: Challenges and Opportunities, September 
2021 

Invited Talk: Rootics & Automation In Mining Breakfast Series (Denver), Augmented Reality for 
Search and Rescue in the Underground: Challenges and Opportunities, October 2021 
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6.0 Conclusions and Impact Assessment 
In this work, we combined a thermal imaging camera with a LiDAR sensor and visualized a 
real-time world construction as an AR interface. Our proposed methodology yielded a proof 
of concept wearable device for underground mine search and rescue personnel. The 
feasibility and progressive nature of the device were tested in an experimental underground 
mine located in Idaho Springs, Colorado. The results showed that combining the technologies 
we used enables faster, safer, and more effective disaster response for mine rescue 
operations. Not only does it allow the responders to search the environment more rapidly, but 
it also enables them to detect unexpected hazards before they become imminent threats. 
Moreover, the utility of the developed system is far-reaching, for example, for first responders 
searching smoke-filed burning structures. In the future, it might also enable autonomous 
systems to navigate these occluded environments effectively and enable disaster response to 
focus on the rescue in search-and-rescue. 

While testing the end product, a few challenges were encountered. The first challenge was 
that, although the sensors and hard hat had fixed dimensions, the users' head size and eye 
distance to the sensors were different. This made a small offset for the visual enhancement 
interface. Since the search and rescue operations are time-critical, we added a wireless 
gaming controller for real-time alignment for the visual enhancement stream. The alignment 
helped users to fit the enhancement in four degrees of freedom. 

The second challenge was that the HoloLens was not initially intended for dark environments, 
as the Microsoft software ceased to function as soon as the ambient lighting faded. As a 
workaround, the system allows the programmers to completely turn-off Microsoft provided 
tracking and rendering, which allows us to use the device at a lower level and project the 
images even if the HoloLense loses internal tracking. 

Lastly, for collecting test and debug information, the application needs to be run in Unity. To 
do this, we used an open-source library for Unity called ROS-sharp [43]. Using a network bridge, 
a Unity program could then subscribe to ROS topics and collect the transmitted data. This 
results in a 3-way communication (LiDAR->Linux ROS network->Windows). This was not a 
significant issue as in the end, we would still have a 3-way communication of sensors 
communicating to ROS and that to the HoloLens. Furthermore, there was no visible change in 
the speed of visualizing a scene with moving objects (e.g., waving an arm, or walking around).  
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7.0 Recommendations for Future Work 
Although the initial tests are done with the research team, more comprehensive human 
subject study is needed for statistically significant conclusions for evacuation and search and 
rescue missions.  

Lastly, with the technological advancements such as battery life and capacity, sensor weight 
and compatibility such as Radar, and faster processing power might excel our platform by 
making it more light weight and durable.  

  



22 

 

8.0 References   
1.  Chen J, Li S, Liu D, Li X. Airobsim: Simulating a multisensor aerial robot for urban search 

and rescue operation and training. Sensors (Switzerland). 2020;20(18):1–20.  

2.  Beerbower D, Energy P, Biggerstaff R, Coal A, Blackwell WK, Energy C, et al. Mine Rescue 
Handbook.  

3.  Bertrand JWM, Fransoo JC. Modelling and simulation. Research Methods for Operations 
Management. 2016. 290–330 p.  

4.  Zlot R, Bosse M. Efficient Large-Scale 3D Mobile Mapping and Surface Reconstruction of 
an Underground Mine. In: Yoshida K, Tadokoro S, editors. Field and Service Robotics: 
Results of the 8th International Conference [Internet]. Berlin, Heidelberg: Springer Berlin 
Heidelberg; 2014. p. 479–93. Available from: https://doi.org/10.1007/978-3-642-40686-
7_32 

5.  Conti RS, Chasko LL, Wiehagen WJ, Lazzara CP. Fire Response Preparedness for 
Underground Mines. Inf Circ 9481 [Internet]. 2005;25. Available from: 
https://www.cdc.gov/niosh/mining/UserFiles/works/pdfs/2006-105.pdf 

6.  Zimroz P, Trybała P, Wróblewski A, Góralczyk M, Szrek J, Wójcik A, et al. Application of 
UAV in search and rescue actions in underground mine—A specific sound detection in 
noisy acoustic signal. Energies. 2021;14(13):1–21.  

7.  Willette K. First Responder. NFPA J [Internet]. 2018; Available from: 
https://www.nfpa.org/News-and-Research/Publications-and-media/NFPA-
Journal/2018/January-February-2018/Columns/First-Responder 

8.  Wang W, Dong W, Su Y, Wu D, Du Z. Development of Search-and-rescue Robots for 
Underground Coal Mine Applications. J F Robot. 2014;31(3):386–407.  

9.  Nüchter A, Surmann H, Lingemann K, Hertzberg J, Thrun S. 6D SLAM with an application 
in autonomous mine mapping. Proc - IEEE Int Conf Robot Autom. 2004;2004(2):1998–
2003.  

10.  Rogers JG, Schang A, Nieto-Granda C, Ware J, Carter J, Fink J, et al. The DARPA SubT 
Urban Circuit Mapping Dataset and Evaluation Metric. In: Siciliano B, Laschi C, Khatib O, 
editors. Experimental Robotics. Cham: Springer International Publishing; 2021. p. 391–401.  

11.  Thrun S. Probabilistic robotics. Commun ACM. 2002;45(3):52–7.  

12.  Wang G, Wang W, Ding P, Liu Y, Wang H, Fan Z, et al. Development of a search and 
rescue robot system for the underground building environment. J F Robot. 
2023;40(3):655–83.  

13.  Li S, Guo T, Mo R, Zhao X, Zhou F, Liu W, et al. A rescue-assistance navigation method by 
using the underground location of WSN after disasters. Sensors (Switzerland). 
2020;20(8):1–25.  

14.  Ackerman E. Robots Conquer the Underground: What Darpa’s Subterranean Challenge 
Means for the Future of Autonomous Robots. IEEE Spectr. 2022;59(5):30–7.  

15.  Petrlik M, Petráček P, Krátký V, Musil T, Stasinchuk Y, Vrba M, et al. UAVs Beneath the 
Surface: Cooperative Autonomy for Subterranean Search and Rescue in DARPA SubT. F 
Robot. 2023;3(1):1–68.  



23 

 

16.  Leslie M. Robots Tackle DARPA Underground Challenge. Engineering [Internet]. 
2022;13:2–4. Available from: https://doi.org/10.1016/j.eng.2022.04.003 

17.  DEMIRKAN DC, Duzgun S. An Evaluation of AR-Assisted Navigation for Search and 
Rescue in Underground Spaces. In: 2020 IEEE International Symposium on Mixed and 
Augmented Reality Adjunct (ISMAR-Adjunct). 2020. p. 1–2.  

18.  Bertin J. Semiologie graphique. Paris; 1967.  

19.  Bertin J. Semiology of Graphics: Diagrams, Networks, Maps. UMI Research Press; 1983. 
429 p.  

20.  MacEachren AM. Some Truth With Maps: A Primer on Symbolization and Design. 
Association of American Geographers; 1994. 129 p.  

21.  Wolfe JM. Guided Search 2.0 A revised model of visual search. Psychon Bull Rev. 
1994;1(2):202–38.  

22.  Zhang ZP, Liu J. Research on the symbol vision variable of the three-dimension virtual 
battle environment. Geomatics Spat Inf Technol. 2014;37(9):7–9.  

23.  Hong S, Mao B, Li B. Preliminary Exploration of Three-Dimensional Visual Variables in 
Virtual Reality. In: 2018 International Conference on Virtual Reality and Visualization 
(ICVRV). IEEE; 2018. p. 28–34.  

24.  Conferance Ranks. No Title [Internet]. Available from: 
http://www.conferenceranks.com/index.html?searchall=Human+Factors+in+Computing
+Systems#data 

25.  Ens B, Bach B, Cordeil M, Engelke U, Serrano M, Willett W, et al. Grand Challenges in 
Immersive Analytics. 2021;17:1–17. Available from: http://hdl.handle.net/1880/112984 

26.  Dasgupta A, Poco J, Wei Y, Cook R, Bertini E, Silva CT. Bridging Theory with Practice: An 
Exploratory Study of Visualization Use and Design for Climate Model Comparison. IEEE 
Trans Vis Comput Graph. 2015;21(9):996–1014.  

27.  Laha B, Sensharma K, Schiffbauer JD, Bowman DA. Effects of immersion on visual analysis 
of volume data. IEEE Trans Vis Comput Graph. 2012;18(4):597–606.  

28.  Adams H, Stefanucci J, Creem-Regehr S, Bodenheimer B. Depth Perception in 
Augmented Reality: The Effects of Display, Shadow, and Position. Proc - 2022 IEEE Conf 
Virtual Real 3D User Interfaces, VR 2022. 2022;792–801.  

29.  Arjun S, Reddy GSR, Mukhopadhyay A, Vinod S, Biswas P. Evaluating Visual Variables in a 
Virtual Reality Environment. 34th Br Hum Comput Interact Conf Interact Conf BCS HCI 
2021. 2021;133–8.  

30.  Koch C, Ullman S. Shifts in selctive visual attention: twords the underlying neural circuitry. 
Hum Neurobiol. 1985;4(10):219–27.  

31.  Itti L, Koch C, Niebur E. A Model of Saliency-Based Visual Attention for Rapid Scene 
Analysis. IEEE Trans Pattern Anal Mach Intell. 1998;20(11):1254–9.  

32.  Niebur E, Koch C. Control of selective visual attention: modeling the {``}where{’’} 
pathway. Adv Neural Inf Process Syst. 1996;8.  

33.  Veale R, Hafed ZM, Yoshida M. How is visual salience computed in the brain? Insights 



24 

 

from behaviour, neurobiology and modeling. Philos Trans R Soc B Biol Sci. 2017;372(1714).  

34.  Itti L, Koch C. Computational Modelling of. Neuroscience [Internet]. 2001;2(February):1–
11. Available from: http://www.psypress.com/computational-modelling-9781841698557 

35.  Huy THN, Carlon MKJ, Cross JS. Simulated Gaze Tracking using Computer Vision for Virtual 
Reality. Proc 2022 8th Int Conf Immersive Learn Res Network, iLRN 2022. 2022;1–5.  

36.  Arvanitis G, Lalos AS, Moustakas K. Saliency mapping for processing 3D Meshes in 
industrial modeling applications. IEEE Int Conf Ind Informatics. 2019;2019-July:683–6.  

37.  Hosseinkhani J, Joslin C. Significance of Bottom-Up Attributes in Video Saliency Detection 
without Cognitive Bias. In: 2018 IEEE 17th International Conference on Cognitive 
Informatics & Cognitive Computing (ICCI*CC). 2018. p. 606–13.  

38.  Wang Y, Su H, Zhang B, Hu X. Learning Reliable Visual Saliency For Model Explanations. 
IEEE Trans Multimed. 2020;22(7):1796–807.  

39.  Bruce NDB, Tsotsos JK. Saliency based on information maximization. Adv Neural Inf 
Process Syst. 2005;155–62.  

40.  Duzgun S, Isleyen E, Demirkan D ~C., Orsvuran R, Bozdag E, Pugmire D. Virtual and 
Augmented Reality for Visualization of Big Data: Examples from Deep Earth to 
Subsurface. In: AGU Fall Meeting Abstracts. 2019. p. IN21B-05.  

41.  Rusu RB, Cousins S. 3D is here: Point Cloud Library (PCL). In: IEEE International Conference 
on Robotics and Automation (ICRA). Shanghai, China; 2011.  

42.  Intel. Intel® RealSenseTM LiDAR Camera L515 [Internet]. Available from: 
https://store.intelrealsense.com/buy-intel-realsense-lidar-camera-l515.html#tech-specs 

43.  Bischoff M. ROS# [Internet]. GitHub; 2019. Available from: 
https://github.com/siemens/ros-sharp/releases/tag/v1.5 

 

 
  



25 

 

9.0 Appendices   
 

Appendix A: Post Survey Questions 
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